![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Nonlinear complex open systems show great diversity in the process of self-organization, and that diversity increases as complexity increases. The measurement of complexity and the origins of the diversity of such complex systems are the focus of interdisciplinary studies extending across a wide range of scientific disciplines that include applied mathematics, physics, chemistry, biology, psychology, ecology, sociology, and economics. Previous investigations have concentrated either on complexity or on diversity, but not both. This volume makes clear the relation between complexity and diversity with examples drawn from various disciplines. Compiles here are presentations from the Complexity and Diversity workshop held in Fugue, Japan, in August 1996. The contributions are the results of research in mathematical systems, physical systems, living systems, and social systems, and are contained in the four corresponding sections of the book. Mathematical expressions for the theory of complexity as a fundamental method along with realistic examples for application of systematic methods provide the reader with ready access to the latest topics in complex systems.
For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" ~O- forms") . Certain among the resul ts included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X, XII where I in clude results contained in the Ph.D.theses by my students w. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of ~ -dimensional 0 spaces ideally serves the purpose. First, these spaces show a large nurober of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional Situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension ~O it is easy to see, in a given case, wheth er topological language is appropriate or not) .
The study of phase transitions is one of the fundamental problems of physics. The goal of this seminar was to understand better the spectacular progress made recently in constructing continuum models. Concentrating on a few examples such as the microstructure of crystals, defects in liquid crystals and liquid-vapor interfaces, several key points are described, for example the structure and evolution of the interfaces, regularization via interfacial energy, and equilibrium theories. The mathematical treatment of these questions involves large-oscillation theories (Young's measures, compensated compactness), spectral theory, admissibility of shock waves, long-time behavior of dynamical systems, high-order perturbations, group actions, solitons, and others.
This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this technique and its power and flexibility.
Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics.
Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential equations with boundary conditions. He studied singulari ties coming from coefficients, boundary conditions, and mainly non-smooth domains, and left a legacy of precise results which have been published in journals and books. Pierre Grisvard spent most of his career as a full professor at the University of Nice, where he started in 1967. For shorter or longer periods, he visited several foreign countries, and collaborated with some of the most famous mathematicians in his field. He was also an excellent organizer and directed a large number of Ph.D. students. Finally, this volume contains a bibliography of Grisvard's works as well as one paper which he wrote and which has not been published before."
facts. An elementary acquaintance with topology, algebra, and analysis (in cluding the notion of a manifold) is sufficient as far as the understanding of this book is concerned. All the necessary properties and theorems have been gathered in the preliminary chapters -either with proofs or with references to standard and elementary textbooks. The first chapter of the book is devoted to a study of the rings Oa of holomorphic functions. The notions of analytic sets and germs are introduced in the second chapter. Its aim is to present elementary properties of these objects, also in connection with ideals of the rings Oa. The case of principal germs ( 5) and one-dimensional germs (Puiseux theorem, 6) are treated separately. The main step towards understanding of the local structure of analytic sets is Ruckert's descriptive lemma proved in Chapter III. Among its conse quences is the important Hilbert Nullstellensatz ( 4). In the fourth chapter, a study of local structure (normal triples, 1) is followed by an exposition of the basic properties of analytic sets. The latter includes theorems on the set of singular points, irreducibility, and decom position into irreducible branches ( 2). The role played by the ring 0 A of an analytic germ is shown ( 4). Then, the Remmert-Stein theorem on re movable singularities is proved ( 6). The last part of the chapter deals with analytically constructible sets ( 7)."
In this volume selected papers delivered at the special session on "Spectral and scattering theory" are published. This session was organized by A. G. Ramm at the first international congress ofISAAC (International Society for Analysis, Applications and Computing) which was held at the University of Delaware, June 3-7, 1997. The papers in this volume deal with a wide va riety of problems including some nonlinear problems (Schechter, Trenogin), control theory (Shubov), fundamental problems of physics (Kitada), spectral and scattering theory in waveg uides and shallow ocean (Ramm and Makrakis), inverse scattering with incomplete data (Ramm), spectral theory for Sturm-Liouville operators with singular coefficients (Yurko) and with energy-dependent coefficients (Aktosun, Klaus, and van der Mee), spectral theory of SchrOdinger operators with periodic coefficients (Kuchment, Vainberg), resolvent estimates for SchrOdinger-type and Maxwell's operators (Ben-Artzi and Nemirovsky), SchrOdinger oper ators with von Neumann-Wignertype potentials (Rejto and Taboada), principal eigenvalues for indefinite-weight elliptic operators (pinchover), and symmetric solutions of Ginzburg-Landau equations (Gustafson). These papers will be of interest to a wide audience including mathematicians, physicists, and theoretically oriented engineers. A. G. Ramm Manhattan, KS v CONTENTS 1. Wave Scattering in 1-0 Nonconservative Media . . . . . . . . . . . . . . . . . . . Tuncay Aktosun, Martin Klaus, and Comelis van der Mee 2. Resolvent Estimates for SchrOdinger-type and Maxwell Equations with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Matania Ben-Artzi and Jonathan Nemirovsky 3. Symmetric Solutions of Ginzburg-Landau Equations 33 S. Gustafson 4. Quantum Mechanics and Relativity: Their Unification by Local Time . . . . . . . 39 Hitoshi Kitada 5."
The present book contains three articles: "Systems of Linear Differential Equations," by V. P. Palamodov; "Fredholm Operators and Their Generalizations," by S. N. Krachkovskii and A. S. Di kanskii; and "Representations of Groups and Algebras in Spaces with an Indefinite Metric" by M. A. Naimark and R. S. Ismagilov. In the fi.rst article the accent is on those characteristics of systems of differential equations which distinguish the systems from the scalar case. Considerable space is devoted in particular to "nonquadratic systems," a topic that has very recently stimulated interest. The second article is devoted to the algebraic aspects of the theory of operators (determinant theory in particular) in Banach and linear topological spaces. The third article reflects the present state of the art in the given area of the theory of representations, which has been re ceiving considerable attention in connection with its applications in physics (particularly in quantum field theory) and in the theory of differential equations."
In the first half of the 19th century geometry changed radically, and withina century it helped to revolutionize both mathematics and physics. It also put the epistemology and the philosophy of science on a new footing. In this volume a sound overview of this development is given by leading mathematicians, physicists, philosophers, and historians of science. This interdisciplinary approach gives this collection a unique character. It can be used by scientists and students, but it also addresses a general readership.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems."
Real quaternion analysis is a multi-faceted subject. Created to describe phenomena in special relativity, electrodynamics, spin etc., it has developed into a body of material that interacts with many branches of mathematics, such as complex analysis, harmonic analysis, differential geometry, and differential equations. It is also a ubiquitous factor in the description and elucidation of problems in mathematical physics. In the meantime real quaternion analysis has become a well established branch in mathematics and has been greatly successful in many different directions. This book is based on concrete examples and exercises rather than general theorems, thus making it suitable for an introductory one- or two-semester undergraduate course on some of the major aspects of real quaternion analysis in exercises. Alternatively, it may be used for beginning graduate level courses and as a reference work. With exercises at the end of each chapter and its straightforward writing style the book addresses readers who have no prior knowledge on this subject but have a basic background in graduate mathematics courses, such as real and complex analysis, ordinary differential equations, partial differential equations, and theory of distributions.
A discussion of the interplay of diffusion processes and partial differential equations with an emphasis on probabilistic methods. It begins with stochastic differential equations, the probabilistic machinery needed to study PDE, and moves on to probabilistic representations of solutions for PDE, regularity of solutions and one dimensional diffusions. The author discusses in depth two main types of second order linear differential operators: non-divergence operators and divergence operators, including topics such as the Harnack inequality of Krylov-Safonov for non-divergence operators and heat kernel estimates for divergence form operators, as well as Martingale problems and the Malliavin calculus. While serving as a textbook for a graduate course on diffusion theory with applications to PDE, this will also be a valuable reference to researchers in probability who are interested in PDE, as well as for analysts interested in probabilistic methods.
The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note- worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu- bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application.
The purpose of this book is to give an introduction to the Laplace transform on the undergraduate level. The material is drawn from notes for a course taught by the author at the Milwaukee School of Engineering. Based on classroom experience, an attempt has been made to (1) keep the proofs short, (2) introduce applications as soon as possible, (3) concentrate on problems that are difficult to handle by the older classical methods, and (4) emphasize periodic phenomena. To make it possible to offer the course early in the curriculum (after differential equations), no knowledge of complex variable theory is assumed. However, since a thorough study of Laplace. transforms requires at least the rudiments of this theory, Chapter 3 includes a brief sketch of complex variables, with many of the details presented in Appendix A. This plan permits an introduction of the complex inversion formula, followed by additional applications. The author has found that a course taught three hours a week for a quarter can be based on the material in Chapters 1, 2, and 5 and the first three sections of Chapter 7. If additional time is available (e.g., four quarter-hours or three semester-hours), the whole book can be covered easily. The author is indebted to the students at the Milwaukee School of Engineering for their many helpful comments and criticisms.
The classical theories of Linear Elasticity and Newtonian Fluids, though trium phantly elegant as mathematical structures, do not adequately describe the defor mation and flow of most real materials. Attempts to characterize the behaviour of real materials under the action of external forces gave rise to the science of Rheology. Early rheological studies isolated the phenomena now labelled as viscoelastic. Weber (1835, 1841), researching the behaviour of silk threats under load, noted an instantaneous extension, followed by a further extension over a long period of time. On removal of the load, the original length was eventually recovered. He also deduced that the phenomena of stress relaxation and damping of vibrations should occur. Later investigators showed that similar effects may be observed in other materials. The German school referred to these as "Elastische Nachwirkung" or "the elastic aftereffect" while the British school, including Lord Kelvin, spoke ofthe "viscosityofsolids." The universal adoption of the term "Viscoelasticity," intended to convey behaviour combining proper ties both of a viscous liquid and an elastic solid, is of recent origin, not being used for example by Love (1934), though Alfrey (1948) uses it in the context of polymers. The earliest attempts at mathematically modelling viscoelastic behaviour were those of Maxwell (1867) (actually in the context of his work on gases; he used this model for calculating the viscosity of a gas) and Meyer (1874)."
Coding theory, system theory, and symbolic dynamics have much in common. A major new theme in this area of research is that of codes and systems based on graphical models. This volume contains survey and research articles from leading researchers at the interface of these subjects.
Under the guidance and inspiration of Dr. Ajit Iqbal Singh, an International Conference on Harmonie Analysis took place at the Uni- versity of Delhi, India, from December 18 to 22, 1995. Twenty-one dis- tinguished mathematicians from around the world, as weIl as many from India, participated in this successful and stimulating conference. An underlying theme of the conference was hypergroups, the the- ory of wh ich has developed and been found useful in fields as diverse as special functions, differential equations, probability theory, representa- tion theory, measure theory, Hopf algebras and quantum groups. Some other areas of emphasis that emerged were harmonie analysis of analytic functions, ergo die theory and wavelets. This book includes most of the proceedings of this conference. I chaired the Editorial Board for this publication; the other members were J. M. Anderson (University College London), G. L. Litvinov (Centre for Optimization and Mathematical Modeling, Institute for New Technolo- gies, Moscow), Mrs. A. I. Singh (University ofDelhi, India), V. S. Sunder (Institute of Mathematical Sciences, C.LT., Madras, India), and N. J. Wildberger (University of New South Wales, Australia). I appreciate all the help provided by these editors as weIl as the help and cooperation of Our authors and referees of their papers. I especially appreciate techni- cial assistance and advice from Alan L. Schwartz (University of Missouri - St. Louis, USA) and Martin E. Walter (University of Colorado, USA). Finally, I thank Our editor, Ann Kostant, for her help and encouragement during this project.
In this volume nonlinear systems related to integrable systems are studied. Lectures cover such topics as the application of integrable systems to the description of natural phenomena, the elaboration of perturbation theories, and the statistical mechanics of ensembles of objects obeying integrable equations. The more physical lectures center largely around the three paradigmatic equations: Korteweg de Vries, Sine-Gordon and Nonlinear Schroedinger, especially the latter. These have long been of great mathematical interest, and also exhibit a "universality" which places them among the most frequently encountered integrable equations in the description of physical systems. Tidal waves, optical fibers and laser beams are among the topics discussed. Lectures are also devoted to multidimensional solitons, integrability of Hamiltonian systems of ODEs and dissipative systems of PDEs.
The International Symposium on Generalized Functions and Their Applications was organized by the Department of Mathematics, Banaras Hindu University, and held December 23-26, 1991, on the occasion of the Platinum Jubilee Celebration of the university. More than a hundred mathematicians from ten countries participated in the deliberations of the symposium. Thirty lectures were delivered on a variety of topics within the area. The contributions to the proceedings of the symposium are, with a few exceptions, expanded versions of the lectures delivered by the invited speakers. The survey papers by Komatsu and Hoskins and Sousa Pinto provide an up-to-date account of the theory of hyperfunctions, ultradistributions and microfunctions, and the nonstandard theory of new generalized functions, respectively; those by Stankovic and Kanwal deal with structures and asymptotics. Choquet-Bruhat's work studies generalized functions on manifold and gives applications to shocks and discrete models. The other contributions relate to contemporary problems and achievements in theory and applications, especially in the theory of partial differential equations, differential geometry, mechanics, mathematical physics, and systems science. The proceedings give a very clear impression of the present state of the art in this field and contain many challenges, ideas, and open problems. The volume is very helpful for a broad spectrum of readers: graduate students to mathematical researchers.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples."
This book collects the Proceedings of a Congress held in Frascati (Rome) in the period July 1 -July 10, 1991, on the subject of harmonic analysis and discrete potential theory, and related topics. The Congress was made possible by the financial support of the Italian National Research Council ("Gruppo GNAFA"), the Ministry of University ("Gruppo Analisi Funzionale" of the University of Milano), the University of Rome "Tor Vergata", and was also patronized by the Centro "Vito Volterra" of the University of Rome "Tor Vergata". Financial support for publishing these Proceedings was provided by the University of Rome "Tor Vergata", and by a generous contribution of the Centro "Vito Volterra". I am happy of this opportunity to acknowledge the generous support of all these Institutions, and to express my gratitude, and that of all the participants. A number of distinguished mathematicians took part in the Congress. Here is the list of participants: M. Babillot, F. Choucroun, Th. Coulhon, L. Elie, F. Ledrappier, N. Th. Varopoulos (Paris); L. Gallardo (Brest); Ph. Bougerol, B. Roynette (Nancy); O. Gebuhrer (Strasbourg); G. Ahumada-Bustamante (Mulhouse); A. Valette (Neuchatel); P. Gerl (Salzburg); W. Hansen, H. Leptin (Bielefeld); M. Bozejko, A. Hulanicki, T. Pytlik (Wroclaw); C. Thomassen (Lyngby); P. Sjogren (Goteborg); V. Kaimanovich (Leningrad); A. Nevo (Jerusalem); T. Steger (Chicago); S. Sawyer, M. Taibleson, G. Weiss (St. Louis); J. Cohen, S. S ali ani (Maryland); D. Voiculescu (Berkeley); A. Zemanian (Stony Brook); S. Northshield (Plattsburgh); J. Taylor (Montreal); J.
"This book presents a functional calculus for "n"-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions."
Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics."
The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + * * * + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation.
Despite the fact that Maple is one of the most popular computer algebra systems on the market, surprisingly few users realise its potential for scientific visualisation. This book equips readers with the graphics tools needed on the voyage into the complex and beautiful world of curves and surfaces. A comprehensive treatment of Maples graphics commands and structures is combined with an introduction to the main aspects of visual perception, with priority given to the use of light, colour, perspective, and geometric transformations. Numerous examples cover all aspects of Maple graphics, and these may be easily tailored to the individual needs of the reader. The approach is context-independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book will serve as a comprehensive reference manual. For the beginner, it offers a user-friendly introduction to the subject, with mathematical requirements kept to a minimum, while, for those interested in advanced mathematical visualisation, it explains how to maximise Maples graphical capabilities. |
![]() ![]() You may like...
Level 1/Level 2 Cambridge National in IT…
Maureen Everett, Sonia Stuart, …
Paperback
R1,060
Discovery Miles 10 600
Data Envelopment Analysis with R
Farhad Hosseinzadeh Lotfi, Ali Ebrahimnejad, …
Hardcover
R4,240
Discovery Miles 42 400
Trusted Artificial Intelligence in…
John Soldatos, Dimosthenis Kyriazis
Hardcover
R2,553
Discovery Miles 25 530
Glowworm Swarm Optimization - Theory…
Krishnanand N. Kaipa, Debasish Ghose
Hardcover
Models for Parallel and Distributed…
R Correa, Ines De Castro Dutra, …
Hardcover
R4,548
Discovery Miles 45 480
Advances in High Performance Computing…
Lucio Grandinetti, Etc
Hardcover
R2,690
Discovery Miles 26 900
|