![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
In view of the importance of system identification, the International Federation of Automatic Control (IFAC) and the International Federation of Operational Research Societies (IFORS) hold symposia on this topic every three years. Interest in continuous time approaches to system identification has been growing in recent years. This is evident from the fact that the of invited sessions on continuous time systems has increased from one in the 8th number Symposium that was held in Beijing in 1988 to three in the 9th Symposium in Budapest in 1991. It was during the 8th Symposium in August 1988 that the idea of bringing together important results on the topic of Identification of continuous time systems was conceived. Several distinguished colleagues, who were with us in Beijing at that time, encouraged us by promising on the spot to contribute to a comprehensive volume of collective work. Subsequently, we contacted colleagues all over the world, known for their work in this area, with a formal request to contribute to the proposed volume. The response was prompt and overwhelmingly encouraging. We sincerely thank all the authors for their valuable contributions covering various aspects of identification of continuous time systems.
Pseudo-differential operators belong to the most powerful tools in the analysis of partial differential equations. Basic achievements in the early sixties have initiated a completely new understanding of many old and important problems in analy- sis and mathematical physics. The standard calculus of pseudo-differential and Fourier integral operators may today be considered as classical. The development has been continuous since the early days of the first essential applications to ellip- ticity, index theory, parametrices and propagation of singularities for non-elliptic operators, boundary-value problems, and spectral theory. The basic ideas of the calculus go back to Giraud, Calderon, Zygmund, Mikhlin, Agranovich, Dynin, Vishik, Eskin, and Maslov. Subsequent progress was greatly stimulated by the classical works of Kohn, Nirenberg and Hormander. In recent years there developed a new vital interest in the ideas of micro- local analysis in connection with analogous fields of applications over spaces with singularities, e.g. conical points, edges, corners, and higher singularities. The index theory for manifolds with singularities became an enormous challenge for analysists to invent an adequate concept of ellipticity, based on corresponding symbolic structures. Note that index theory was another source of ideas for the later development of the theory of pseudo-differential operators. Let us mention, in particular, the fundamental contributions by Gelfand, Atiyah, Singer, and Bott.
This self-contained text presents quantum mechanics from the point of view of some computational examples with a mixture of mathematical clarity often not found in texts offering only a purely physical point of view. Emphasis is placed on the systematic application of the Nikiforov-- Uvarov theory of generalized hypergeometric differential equations to solve the Schr"dinger equation and to obtain the quantization of energies from a single unified point of view.
Based on a translation of the 6th edition of Gewoehnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
This text on advanced calculus discusses such topics as number systems, the extreme value problem, continuous functions, differentiation, integration and infinite series. The reader will find the focus of attention shifted from the learning and applying of computational techniques to careful reasoning from hypothesis to conclusion. The book is intended both for a terminal course and as preparation for more advanced studies in mathematics, science, engineering and computation.
The idea of organising a colloquium on turbulence emerged during the sabbatical leave of Prof. Arkady Tsinober in Zurich. New experimental observations and the insight gained through direct numerical simulations have been stimulating research in turbulence and are leading to the developments of new concepts. The organisers felt the necessity to bring together researchers who have contributed significantly to the advances in this field in a colloquium in which the current achievements and the future development in the theoretical, numerical and experimental approaches would be discussed. The main emphasis of the colloquium was put on discussions. These discussions led to an interesting and exciting exchange of ideas, but also involved its very laborious transcription onto paper. It was due to the personal efforts of Mrs. A. Vyskocil, Dr. N. Malik and Dr. X. Studerus that this work could be completed. The colloquium was held in the relaxed atmosphere of the Centro Stefano Franscini in Monte Verita near Ascona, a locality of exceptional natural beauty, which was put at our disposal by the Swiss Federal Institute of Technology. We would like to express our gratitude for this generous financial and logistic support, which contributed considerably to the success of the colloquium. Zurich, April 1993 Th. Dracos, A. Tsinober Participants Adrian, R. J. Kambe, T. Antonia, R. A. Kit,E. Aref, H. Landahl, M. T. Betchov, R. Lesieur, M. Bewersdorff, H. -W. Malik, N. Castaing, B. Moffatt, H. K. Chen, J. Moin,P. Dracos, T. Mullin, T. Frisch, U. Novikov, E. A.
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
The first English edition of a well-known Russian monograph. This book presents the method of difference potentials first proposed by the author in 1969, and contains illustrative examples and new algorithms for solving applied problems of gas dynamics, diffraction, scattering theory, and active noise screening.
native settlement, in 1950 he graduated - as an extramural studen- from Groznyi Teachers College and in 1957 from Rostov University. He taught mathematics in Novocherkask Polytechnic Institute and its branch in the town of Shachty. That was when his mathematical talent blossomed and he obtained the main results given in the present monograph. In 1969 N. V. Govorov received the degree of Doctor of Mathematics and the aca demic rank of a Professor. From 1970 until his tragic death on 24 April 1981, N. V. Govorov worked as Head of the Department of Mathematical Anal ysis of Kuban' University actively engaged in preparing new courses and teaching young mathematicians. His original mathematical talent, vivid reactions, kindness bordering on self-sacrifice made him highly respected by everybody who knew him. In preparing this book for publication I was given substantial assistance by E. D. Fainberg and A. I. Heifiz, while V. M. Govorova took a significant part of the technical work with the manuscript. Professor C. Prather con tributed substantial assistance in preparing the English translation of the book. I. V. Ostrovskii. PREFACE The classic statement of the Riemann boundary problem consists in finding a function (z) which is analytic and bounded in two domains D+ and D-, with a common boundary - a smooth closed contour L admitting a continuous extension onto L both from D+ and D- and satisfying on L the boundary condition +(t) = G(t)-(t) + g(t)."
The fact that I have the opportunity to present a second edition of this monograph is an indicator for the growing size of the community concerned with agent-based computational economics. The rapid developments in this field make it very difficult to keep a volume like this, which is partly devoted to surveying the literature, up to date. I have done my best to incorporate the relevant new developments in this revised edition but it is in the nature of such a work that the selection of material covered is biased by the authors personal interest and his informational constraints. My apologies go to all researchers in this field whose work is not or not adequately represented in this book. Besides the correction of some errors and typos several additions have been made. In the literature survey sections 2.4 (which was also reorganized) and 3.5 new material was added. I have also added a new section in chapter 3 which deals with the question how well empirically observed phenomena can be explained by GA simulations. A new section in chapter 6 presents a rather extensive analysis of the behavior of a two population GA in the framework of a sealed bid double auction market. Further minor additions and changes were made throughout the text.
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Theorems of factorising matrix functions and the operator identity method play an essential role in this book in constructing the spectral theory (direct and inverse problems) of canonical differential systems. Includes many varied applications of the general theory.
One service mathematics has rendered the 'Et moi, .... si favait su comment en revenir, je n'y seTais point alle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense', The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One scrvice logic has rendered com puter science .. .'; 'One service category theory has rendcred mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'e"tre of this scries."
Over the past decades, the Boundary Element Method has emerged as a ver satile and powerful tool for the solution of engineering problems, presenting in many cases an alternative to the more widely used Finite Element Method. As with any numerical method, the engineer or scientist who applies it to a practical problem needs to be acquainted with, and understand, its basic principles to be able to apply it correctly and be aware of its limitations. It is with this intention that we have endeavoured to write this book: to give the student or practitioner an easy-to-understand introductory course to the method so as to enable him or her to apply it judiciously. As the title suggests, this book not only serves as an introductory course, but also cov ers some advanced topics that we consider important for the researcher who needs to be up-to-date with new developments. This book is the result of our teaching experiences with the Boundary Element Method, along with research and consulting activities carried out in the field. Its roots lie in a graduate course on the Boundary Element Method given by the authors at the university of Stuttgart. The experiences gained from teaching and the remarks and questions of the students have contributed to shaping the 'Introductory course' (Chapters 1-8) to the needs of the stu dents without assuming a background in numerical methods in general or the Boundary Element Method in particular."
This IMA Volume in Mathematics and its Applications STATISTICAL MODELS IN EPIDEMIOLOGY, THE ENVIRONMENT, AND CLINICAL TRIALS is a combined proceedings on "Design and Analysis of Clinical Trials" and "Statistics and Epidemiology: Environment and Health. " This volume is the third series based on the proceedings of a very successful 1997 IMA Summer Program on "Statistics in the Health Sciences. " I would like to thank the organizers: M. Elizabeth Halloran of Emory University (Biostatistics) and Donald A. Berry of Duke University (Insti tute of Statistics and Decision Sciences and Cancer Center Biostatistics) for their excellent work as organizers of the meeting and for editing the proceedings. I am grateful to Seymour Geisser of University of Minnesota (Statistics), Patricia Grambsch, University of Minnesota (Biostatistics); Joel Greenhouse, Carnegie Mellon University (Statistics); Nicholas Lange, Harvard Medical School (Brain Imaging Center, McLean Hospital); Barry Margolin, University of North Carolina-Chapel Hill (Biostatistics); Sandy Weisberg, University of Minnesota (Statistics); Scott Zeger, Johns Hop kins University (Biostatistics); and Marvin Zelen, Harvard School of Public Health (Biostatistics) for organizing the six weeks summer program. I also take this opportunity to thank the National Science Foundation (NSF) and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr."
Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.
Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C DEGREES* and W DEGR
Fuzzy data such as marks, scores, verbal evaluations, imprecise observations, experts' opinions and grey tone pictures, are quite common. In Fuzzy Data Analysis the authors collect their recent results providing the reader with ideas, approaches and methods for processing such data when looking for sub-structures in knowledge bases for an evaluation of functional relationship, e.g. in order to specify diagnostic or control systems. The modelling presented uses ideas from fuzzy set theory and the suggested methods solve problems usually tackled by data analysis if the data are real numbers. Fuzzy Data Analysis is self-contained and is addressed to mathematicians oriented towards applications and to practitioners in any field of application who have some background in mathematics and statistics.
The subject of real analytic functions is one of the oldest in modern mathematics and is the wellspring of the theory of analysis, both real and complex. To date, there is no comprehensive book on the subject, yet the tools of the theory are widely used by mathematicians today. Key topics in the theory of real analytic functions that are covered in this text and are rather difficult to pry out of the literature include: the real analytic implicit function theorem, resolution of singularities, the FBI transform, semi-analytic sets, Faa di Bruno's formula and its applications, zero sets of real analytic functions, Lojaciewicz's theorem, Puiseaux's theorem. New to this second edition are such topics as: * A more revised and comprehensive treatment of the Faa di Bruno formula * An alternative treatment of the implicit function theorem * Topologies on the space of real analytic functions * The Weierstrass Preparation Theorem This well organized and clearly written advanced textbook introduces students to real analytic functions of one or more real variables in a systematic fashion. The first part focuses on elementary properties and classical topics and the second part is devoted to more difficult topics. Many historical remarks, examples, references and an excellent index should encourage student and researcher alike to further study this valuable and exciting theory.
During the decade and a half that has elapsed since the intro duction of principal functions (Sario 8 J), they have become impor tant tools in an increasing number of branches of modern mathe matics. The purpose of the present research monograph is to systematically develop the theory of these functions and their ap plications on Riemann surfaces and Riemannian spaces. Apart from brief background information (see below), nothing contained in this monograph has previously appeared in any other book. The basic idea of principal functions is simple: Given a Riemann surface or a Riemannian space R, a neighborhood A of its ideal boundary, and a harmonic function s on A, the principal function problem consists in constructing a harmonic function p on all of R which imitates the behavior of s in A. Here A need not be connected, but may include neighborhoods of isolated points deleted from R. Thus we are dealing with the general problem of constructing harmonic functions with given singularities and a prescribed behavior near the ideal boundary. The function p is called the principal function corresponding to the given A, s, and the mode of imitation of s by p. The significance of principal functions is in their versatility."
After the book "Basic Operator Theory" by Gohberg-Goldberg was pub lished, we, that is the present authors, intended to continue with another book which would show the readers the large variety of classes of operators and the important role they play in applications. The book was planned to be of modest size, but due to the profusion of results in this area of analysis, the number of topics grew larger than ex pected. Consequently, we decided to divide the material into two volumes - the first volume being presented now. During the past years, courses and seminars were given at our respective in stitutions based on parts of the texts. These were well received by the audience and enabled us to make appropriate choices for the topics and presentation for the two vol umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections. We are now aware that the Basic Operator Theory book should be revised so that it may suitably fit in with our present volumes. This revision is planned to be the last step of an induction and not the first."
"...The authors of this remarkable book are among the very few who have faced up to the challenge of explaining what an asymptotic expansion is, and of systematizing the handling of asymptotic series. The idea of using distributions is an original one, and we recommend that you read the book...[it] should be on your bookshelf if you are at all interested in knowing what an asymptotic series is." -"The Bulletin of Mathematics Books" (Review of the 1st edition) ** "...The book is a valuable one, one that many applied mathematicians may want to buy. The authors are undeniably experts in their field...most of the material has appeared in no other book." -"SIAM News" (Review of the 1st edition) This book is a modern introduction to asymptotic analysis intended not only for mathematicians, but for physicists, engineers, and graduate students as well. Written by two of the leading experts in the field, the text provides readers with a firm grasp of mathematical theory, and at the same time demonstrates applications in areas such as differential equations, quantum mechanics, noncommutative geometry, and number theory. Key features of this significantly expanded and revised second edition: * addition of a new chapter and many new sections * wide range of topics covered, including the Ces.ro behavior of distributions and their connections to asymptotic analysis, the study of time-domain asymptotics, and the use of series of Dirac delta functions to solve boundary value problems * novel approach detailing the interplay between underlying theories of asymptotic analysis and generalized functions * extensive examples and exercises at the end of each chapter * comprehensive bibliography and index This work is an excellent tool for the classroom and an invaluable self-study resource that will stimulate application of asymptotic |
You may like...
Calculus, International Metric Edition
Bruce Edwards, Ron Larson
Paperback
Preconditioning and the Conjugate…
Josef Malek, Zdenek Strakos
Paperback
R1,250
Discovery Miles 12 500
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
|