![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
'Et moi, ..., si j'avait Sll comment en revemr, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book project was initiated at "The Tribute Workshop in Honour of Gunnar Sparr" and the follow-up workshop "Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08," held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's
sixty-fifth anniversary and more than forty years of exceptional
service to mathematics and its applications in engineering and
technology, mathematics and engineering education, as well as
interdisciplinary, industrial and international cooperation.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
In this book we introduce the class of mappings of finite distortion as a generalization of the class of mappings of bounded distortion. Connections with models of nonlinear elasticity are also discussed. We study continuity properties, behavior of our mappings on null sets, topological properties like openness and discreteness, regularity of the potential inverse mappings and many other aspects.
This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific dis ciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathe matics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface A successful concurrent numerical simulation requires physics and math ematics to develop and analyze the model, numerical analysis to develop solution methods, and computer science to develop a concurrent implemen tation. No single course can or should cover all these disciplines. Instead, this course on concurrent scientific computing focuses on a topic that is not covered or is insufficiently covered by other disciplines: the algorith mic structure of numerical methods.
Especially among Japanese mathematicians Mitio Nagumo (1905-1995) is regarded as one of the greatest pioneers in research on differential equations. However, so far most of his papers have only been published in Japanese journals and were unavailable in the West. This Collected Papers volume contains practically all mathematical papers Nagumo wrote in languages other than Japanese and will be a basic reference volume and essential working tool for every library and for many active mathematicians in differential equations, topology and differential geometry. In addition, papers that were originally published in Japanese were translated especially for this edition. There are three main sections in this book, devoted to ordinary differential equations, partial differential equations and other equations. Each section is accompanied by a detailed commentary provided by the editors.
This book introduces two most important aspects of modern analysis: the theory of measure and integration and the theory of Banach and Hilbert spaces. It is designed to serve as a text for first-year graduate students who are already familiar with some analysis as given in a book similar to Apostol's Mathematical Analysis. t This book treats in sufficient detail most relevant topics in the area of real and functional analysis that can be included in a book of this nature and size and at the level indicated above. It can serve as a text for a solid one-year course entitled "Measure and Integration Theory" or a com prehensive one-year course entitled "Banach Spaces, Hilbert Spaces, and Spectral Theory. " For the latter alternative, the student is, of course, required to have some knowledge of measure and integration theory. The breadth of the book gives the instructor enough flexibility to choose what is best suited for his/her class. Specifically the following alternatives are available: (a) A one-year course on "Measure and Integration" utilizing Chapters 1 (Sections l. l-1. 3 and 1. 6), 2, 3, 4, portions of 5 (information on Lp spaces), and portions of 7 (left to the discretion of the teacher). (b) A one-year course in "Functional Analysis" utilizing Chapters 1 (Sections 1. 4-1. 6), 5, 6, 7 (Sections 7. 4 and 7. 6), and the Ap pendix. t T. M. Apostol, Mathematical Analysis, 2nd ed., Addison-Wesley (1974)."
As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.
Two-fluid dynamics is a challenging subject rich in physics and prac tical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actu ally work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This proce dure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.
From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #"Book Review - " "Engineering Societies Library, New York"#1 "An attempt to make research tools concerning strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #"American Mathematical Monthly"#2
The theory presented in this book is developed constructively, is based on a few axioms encapsulating the notion of objects (points and sets) being apart, and encompasses both point-set topology and the theory of uniform spaces. While the classical-logic-based theory of proximity spaces provides some guidance for the theory of apartness, the notion of nearness/proximity does not embody enough algorithmic information for a deep constructive development. The use of constructive (intuitionistic) logic in this book requires much more technical ingenuity than one finds in classical proximity theory -- algorithmic information does not come cheaply -- but it often reveals distinctions that are rendered invisible by classical logic. In the first chapter the authors outline informal constructive logic and set theory, and, briefly, the basic notions and notations for metric and topological spaces. In the second they introduce axioms for a point-set apartness and then explore some of the consequences of those axioms. In particular, they examine a natural topology associated with an apartness space, and relations between various types of continuity of mappings. In the third chapter the authors extend the notion of point-set (pre-)apartness axiomatically to one of (pre-)apartness between subsets of an inhabited set. They then provide axioms for a quasiuniform space, perhaps the most important type of set-set apartness space. Quasiuniform spaces play a major role in the remainder of the chapter, which covers such topics as the connection between uniform and strong continuity (arguably the most technically difficult part of the book), apartness and convergence in function spaces, types of completeness, and neat compactness. Each chapter has a Notes section, in which are found comments on the definitions, results, and proofs, as well as occasional pointers to future work. The book ends with a Postlude that refers to other constructive approaches to topology, with emphasis on the relation between apartness spaces and formal topology. Largely an exposition of the authors' own research, this is the first book dealing with the apartness approach to constructive topology, and is a valuable addition to the literature on constructive mathematics and on topology in computer science. It is aimed at graduate students and advanced researchers in theoretical computer science, mathematics, and logic who are interested in constructive/algorithmic aspects of topology.
The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6 9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( cents, f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . ."
This book offers an exposition of the main applications of Nonlinear Analysis, beginning with a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. The presentation is supplemented with the inclusion of many exercises and their solutions.
This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
Since from more than a century, the study of various types of integral equations and inequalities has been focus of great attention by many researchers, interested both in theory and its applications. In particular, there exists a very rich literature related to the integral equations and inequalities and their applications. The present monograph is an attempt to organize recent progress related to the Multidimensional integral equations and inequalities, which we hope will widen the scope of their new applications. The field to be covered is extremely wide and it is nearly impossible to treat all of them here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with reasonable background in real analysis and acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be an invaluable reading for mathematicians, physicists and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions."
When the DFG (Deutsche Forschungsgemeinschaft) launched its collabora tive research centre or SFB (Sonderforschungsbereich) 438 "Mathematical Modelling, Simulation, and Verification in Material-Oriented Processes and Intelligent Systems" in July 1997 at the Technische Vniversitat Munchen and at the Vniversitat Augsburg, southern Bavaria got its second nucleus of the still young discipline scientific computing. Whereas the first and older one, FORTWIHR, the Bavarian Consortium for High Performance Scientific Com puting, had put its main emphasis on the supercomputing aspect, this new initiative was now expected to focus on the mathematical part. Consequently, throughout all of the five main research topics (A) adaptive materials and thin layers, (B) adaptive materials in medicine, (C) robotics, aeronautics, and automobile technology, (D) microstructured devices and systems, and (E) transport processes in flows, mathematical aspects play a predominant role. The formation of the SFB 438 and its scientific program are inextricably linked with the name of Karl-Heinz Hoffmann. As full professor for applied mathematics in Augsburg (1981-1991) and in Munchen (since 1992) and as dean of the faculty of mathematics at the TV Munchen, he was the driv ing force of this fascinating, but not always easy-to-realize idea of bringing together scientists from mathematics, physics, engineering, informatics, and medicine for joint efforts in modern applied mathematics. However, scarcely work had begun when the successful captain was called to take command on a bigger boat."
Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.
This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.
The present edition differs from the original German one mainly in the following addi tional material: weighted norm inequalities for maximal functions and singular opera tors ( 12, Chap. XI), polysingular integral operators and pseudo-differential operators ( 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations ( 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise."
This corrected third printing retains the authors'main emphasis on ordinary differential equations. It is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. The authors have taken the view that a differential equations theory defines functions; the object of the theory is to understand the behaviour of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods, and the companion software, MacMath, is designed to bring these notions to life. |
![]() ![]() You may like...
Carbon-based Polymer Nanocomposites for…
Ahmad Fauzi Ismail, Pei Sean Goh
Paperback
Nonequilibrium Thermodynamics…
Yasar Demirel, Vincent Gerbaud
Paperback
Systematic Complex Problem Solving in…
Denis Cavallucci, Stelian Brad, …
Hardcover
R2,957
Discovery Miles 29 570
|