![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This volume presents answers to some natural questions of a general analytic character that arise in the theory of Banach spaces. I believe that altogether too many of the results presented herein are unknown to the active abstract analysts, and this is not as it should be. Banach space theory has much to offer the prac titioners of analysis; unfortunately, some of the general principles that motivate the theory and make accessible many of its stunning achievements are couched in the technical jargon of the area, thereby making it unapproachable to one unwilling to spend considerable time and effort in deciphering the jargon. With this in mind, I have concentrated on presenting what I believe are basic phenomena in Banach spaces that any analyst can appreciate, enjoy, and perhaps even use. The topics covered have at least one serious omission: the beautiful and powerful theory of type and cotype. To be quite frank, I could not say what I wanted to say about this subject without increasing the length of the text by at least 75 percent. Even then, the words would not have done as much good as the advice to seek out the rich Seminaire Maurey-Schwartz lecture notes, wherein the theory's development can be traced from its conception. Again, the treasured volumes of Lindenstrauss and Tzafriri also present much of the theory of type and cotype and are must reading for those really interested in Banach space theory."
The Workshop on Operator Theory and Boundary Eigenvalue Problems was held at the Technical University, Vienna, Austria, July 27 to 30, 1993. It was the seventh workshop in the series of IWOTA (International Workshops on Operator Theory and Applications). The main topics at the workshop were interpolation problems and analytic matrix functions, operator theory in spaces with indefinite scalar products, boundary value problems for differential and functional-differential equations and systems theory and control. The workshop covered different aspects, starting with abstract operator theory up to contrete applications. The papers in these proceedings provide an accurate cross section of the lectures presented at the workshop. This book will be of interest to a wide group of pure and applied mathematicians.
A basic principle governing the boundary behaviour of holomorphic func tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.
A NATO Advanced Study Institute on Nonlinear Functional Analysis and Its Applications was held in Hotel Villa del Mare, Maratea, It.a1y during April 22 - May 3, 1985. This volume consists of the Proceedings of the Institute. These Proceedings include the invited lectures and contributed papers given during the Institute. The papers have been refereed. The aim of these lectures was to bring together recent and up-to-date development of the subject, and to give directions for future research. The main topics covered include: degree and generalized degree theory, results related to Hamiltonian Systems, Fixed Point theory, linear and nonlinear Differential and Partial Differential Equations, Theory of Nielsen Numbers, and applications to Dynamical Systems, Bifurcation Theory, Hamiltonian Systems, Minimax Theory, Heat Equations, Pendulum Equation, Nonlinear Boundary Value Problems, and Dirichlet and Neumann problems for elliptic equations and the periodic Dirichlet problem for semilinear beam equations. I express my sincere thanks to Professors F. E. Browder, R. Conti, A. Do1d, D. E. Edmunds and J. Mawhin members of the Advisory Committee.
This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.
In response to the growing use of reaction diffusion problems in many fields, this monograph gives a systematic treatment of a class of nonlinear parabolic and elliptic differential equations and their applications these problems. It is an important reference for mathematicians and engineers, as well as a practical text for graduate students.
1 More than thirty years after its discovery by Abraham Robinson, the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum, as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians."
In the past few years, the differential quadrature method has been
applied extensively in engineering. This book, aimed primarily at
practising engineers, scientists and graduate students, gives a
systematic description of the mathematical fundamentals of
differential quadrature and its detailed implementation in solving
Helmholtz problems and problems of flow, structure and vibration.
Differential quadrature provides a global approach to numerical
discretization, which approximates the derivatives by a linear
weighted sum of all the functional values in the whole domain.
Following the analysis of function approximation and the analysis
of a linear vector space, it is shown in the book that the
weighting coefficients of the polynomial-based, Fourier
expansion-based, and exponential-based differential quadrature
methods can be computed explicitly. It is also demonstrated that
the polynomial-based differential quadrature method is equivalent
to the highest-order finite difference scheme. Furthermore, the
relationship between differential quadrature and conventional
spectral collocation is analysed.
Descriptor linear systems theory is an important part in the general field of control systems theory, and has attracted much attention in the last two decades. In spite of the fact that descriptor linear systems theory has been a topic very rich in content, there have been only a few books on this topic. This book provides a systematic introduction to the theory of continuous-time descriptor linear systems and aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory. The clear representation of materials and a large number of examples make this book easy to understand by a large audience. General readers will find in this book a comprehensive introduction to the theory of descriptive linear systems. Researchers will find a comprehensive description of the most recent results in this theory and students will find a good introduction to some important problems in linear systems theory.
The Springer edition of this book is an unchanged reprint of Courant and Friedrich's classical treatise which was first published in 1948. The basic research for it took place during World War II, but there are many aspects which still make the book interesting as a text and as a reference. It treats basic aspects of the dynamics of compressible fluids in mathematical form, and attempts to present a systematic theory of nonlinear wave propagation, particularly in relation to gas dynamics. Written in the form of an advanced textbook, it accounts for classical as well as some fairly recent developments. The authors intend their audience to be engineers, physicists and mathematicians alike.
During the week of August 31 - September 4, 1998, a conference in honour of Vladimir Maz'ya was held in Rostock as a satellite meeting of the World Congress of Mathematicians. It was sponsored by the German Research Founda tion (Deutsche Forschungsgemeinschaft) and the Ministry of Education and Cul tural Affairs of the land Mecklenburg-Vorpommern. During his forty year career Maz'ya contributed to so many areas of mathematical analysis that such a broad topic of the conference as "Functional Analysis, Partial Differential Equations and Applications" sounds quite nat al. The conference was organized by the Depart ment of Mathematics of the University of Rostock and the Weierstrass Institute of Applied Analysis and Stochastics in Berlin on the occasion of his 60th birth day. For many years Maz'ya was connected with mathematicians from Berlin and Rostock through his work in potential theory, in differential and pseudodifferen tial equations and in approximation theory. In 1990 he was awarded an honorary doctorate by the University of Rostock. Shortly before the meeting, one of its organizers, an outstanding mathematician and Maz'ya's dear friend, Siegfried Pr6Bdorf died. This was a heavy loss for the and for the conference in particular. During the German mathematical community meeting the rector of the University of Rostock, Prof. Wildenhain, the director of the Weierstrass Institute, Prof. Sprekels, and Prof. Maz'ya remembered S. Pr6Bdorf very warmly. The conference was attended by 109 mathematicians from 21 countries, and the program included 24 invited lectures and 63 short communications."
This is the first volume of a series of books that will describe current advances and past accompli shments of mathemat i ca 1 aspects of nonlinear sCience taken in the broadest contexts. This subject has been studied for hundreds of years, yet it is the topic in whi ch a number of outstandi ng di scoveri es have been made in the past two decades. Clearly, this trend will continue. In fact, we believe some of the great scientific problems in this area will be clarified and perhaps resolved. One of the reasons for this development is the emerging new mathematical ideas of nonlinear science. It is clear that by looking at the mathematical structures themselves that underlie experiment and observation that new vistas of conceptual thinking lie at the foundation of the unexplored area in this field. To speak of specific examples, one notes that the whole area of bifurcation was rarely talked about in the early parts of this century, even though it was discussed mathematically by Poi ncare at the end of the ni neteenth century. I n another di rect ion, turbulence has been a key observation in fluid dynamics, yet it was only recently, in the past decade, that simple computer studies brought to light simple dynamical models in which chaotic dynamics, hopefully closely related to turbulence, can be observed.
to Spectral Theory With Applications to Schr6dinger Operators Springer I.M. Sigal P.D. Hislop Department of Mathematics Department of Mathematics University of Kentucky University of Toronto Toronto, Ontario M5S lAI Lexington, KY 40506-0027 USA Canada Editors J .E. Marsden L. Sirovich Control and Dynamical Systems 104-44 Division of Applied Mathematics California 1 nstitute of Technology Brown University Pasadena, CA 91125 Providence, RI 02912 USA USA Mathematics Subject Classification (1991): S1Q05, 35JIO, 35Q55 LJbrary of Congress Cataloging-in-Publication Data Hislop, P.D., 1955- Introduction to spectrallheory : with applications 10 Schrodinger operators I P.D. Hislop, l.M. Siga!. p. cm. - (Applied mathematical sciences; v. 113) lncludes bibliographical references (p. ) and index. ISBN 978-1-4612-6888-8 ISBN 978-1-4612-0741-2 (eBook) DOI 10.1007/978-1-4612-0741-2 1. Schr6dinger operalors. 2. Spectraltheory (Mathematics) I. Siga1, hrael Michae!, 1945- . II. Title. III. Series: Applied mathematlcal sclem:es (Springer-Verlag New York Inc.); v. 113. QA1. A647 voI. 113 IQC 174.17. S3j 510 s-de20 [515 '7223[ 95-12926 Pri nte d o n acid -free paper . (c) 1996 Springer Science+Business Media New York Originally published by Springer-Verlag New Vork in 1996 Softcover reprint ofthe hardcover 15t edition 1996 AII rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthe publisher Springer Science+Business Media, LLC, except for brief excerpts in connection with reviews or scholarly analysis.
This graduate text in real analysis is a solid building block for research in analysis, PDEs, the calculus of variations, probability, and approximation theory. It covers all the core topics, such as a basic introduction to functional analysis, and it discusses other topics often not addressed including Radon measures, the Besicovitch covering Theorem, the Rademacher theorem, and a constructive presentation of the Stone-Weierstrass Theoroem.
The present book is the first of the two volume Proceedings of the Mark Krein International Conference on Operator Theory and Applications. This conference, which was dedicated to the 90th Anniversary of the prominent mathematician Mark Krein, was held in Odessa, Ukraine from 18-22 August, 1997. The confer encefocused onthemain ideas, methods, results, andachievementsofM.G. Krein. This first volume is devoted to the theory of differential operators and related topics. It opens with a description of the conference, biographical material and a number of survey papers about the work of M.G. Krein. The main part of the book consists oforiginal research papers presenting the stateofthe art in the area ofdifferential operators. The second volume of these proceedings, entitled Operator Theory and related Topics, concerns the other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. Table of Contents Preface............................................................. v Table of Contents VII Picture of M.G. Krein Xl About the Mark Krein International Conference . Mark Grigorevich Krein (A short biography) 5 I. Gohberg The Seminar on Ship Hydrodynamics, Organized by M.G. Krein 9 v.G. Sizov Review Papers: The Works ofM.G. Krein on Eigenfunction Expansion for Selfadjoint Operators and their Applications and Development 21 Yu.M. Berezansky M.G. Krein and the Extension Theory of Symmetric Operators."
The Spring 1986 Program in Geometric Function Theory (GFT) at the Mathematical Sciences Research Institute (MSRI) brought together mathe maticians interested in Teichmiiller theory, quasiconformal mappings, Kleinian groups, univalent functions and value distribution. It included a large and stimulating Workshop, preceded by a mini-conference on String Theory attended by both mathematicians and physicists. These activities produced interesting results and fruitful interactions among the partici pants. These volumes represent only a portion of the papers that will even tually result from ideas developed in the offices and corridors of MSRI's elegant home. The Editors solicited contributions from all participants in the Program whether or not they gave a talk at the Workshop. Papers were also submit ted by mathematicians invited but unable to attend. All manuscripts were refereed. The articles included here cover a broad spectrum, representative of the activities during the semester. We have made an attempt to group them by subject, for the reader's convenience. The Editors take pleasure in thanking all participants, authors and ref erees for their work in producing these volumes. We are also grateful to the Scientific Advisory Council of MSRI for sup porting the Program in GFT. Finally thanks are due to the National Sci ence Foundation and those Universities (including Cornell, Michigan, Min nesota, Rutgers Newark, SUNY Stony Brook) who gave released time to faculty members to participate for extended periods in this program."
In recent years considerable interest has been focused on nonlinear diffu sion problems, the archetypical equation for these being Ut = D.u + f(u). Here D. denotes the n-dimensional Laplacian, the solution u = u(x, t) is defined over some space-time domain of the form n x O, T], and f(u) is a given real function whose form is determined by various physical and mathematical applications. These applications have become more varied and widespread as problem after problem has been shown to lead to an equation of this type or to its time-independent counterpart, the elliptic equation of equilibrium D.u + f(u) = o. Particular cases arise, for example, in population genetics, the physics of nu clear stability, phase transitions between liquids and gases, flows in porous media, the Lend-Emden equation of astrophysics, various simplified com bustion models, and in determining metrics which realize given scalar or Gaussian curvatures. In the latter direction, for example, the problem of finding conformal metrics with prescribed curvature leads to a ground state problem involving critical exponents. Thus not only analysts, but geome ters as well, can find common ground in the present work. The corresponding mathematical problem is to determine how the struc ture of the nonlinear function f(u) influences the behavior of the solution."
The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + * * * + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation.
Presenting mathematics as forming a natural bridge between the humanities and the sciences, this book makes calculus accessible to those in the liberal arts. Much of the necessary geometry and algebra are exposed through historical development, and a section on the development of calculus offers insights into the place of mathematics in the history of thought.
This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: * Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and * Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.
The papers in this volume are an outgrowth of the lectures and informal discussions that took place during the workshop on "The Geometry of Hamiltonian Systems" which was held at MSRl from June 5 to 16, 1989. It was, in some sense, the last major event of the year-long program on Symplectic Geometry and Mechanics. The emphasis of all the talks was on Hamiltonian dynamics and its relationship to several aspects of symplectic geometry and topology, mechanics, and dynamical systems in general. The organizers of the conference were R. Devaney (co-chairman), H. Flaschka (co-chairman), K. Meyer, and T. Ratiu. The entire meeting was built around two mini-courses of five lectures each and a series of two expository lectures. The first of the mini-courses was given by A. T. Fomenko, who presented the work of his group at Moscow University on the classification of integrable systems. The second mini course was given by J. Marsden of UC Berkeley, who spoke about several applications of symplectic and Poisson reduction to problems in stability, normal forms, and symmetric Hamiltonian bifurcation theory. Finally, the two expository talks were given by A. Fathi of the University of Florida who concentrated on the links between symplectic geometry, dynamical systems, and Teichmiiller theory."
Within the tradition of meetings devoted to potential theory, a conference on potential theory took place in Prague on 19-24, July 1987. The Conference was organized by the Faculty of Mathematics and Physics, Charles University, with the collaboration of the Institute of Mathematics, Czechoslovak Academy of Sciences, the Department of Mathematics, Czech University of Technology, the Union of Czechoslovak Mathematicians and Physicists, the Czechoslovak Scientific and Technical Society, and supported by IMU. During the Conference, 69 scientific communications from different branches of potential theory were presented; the majority of them are in cluded in the present volume. (Papers based on survey lectures delivered at the Conference, its program as well as a collection of problems from potential theory will appear in a special volume of the Lecture Notes Series published by Springer-Verlag). Topics of these communications truly reflect the vast scope of contemporary potential theory. Some contributions deal with applications in physics and engineering, other concern potential theoretic aspects of function theory and complex analysis. Numerous papers are devoted to the theory of partial differential equations. Included are also many articles on axiomatic and abstract potential theory with its relations to probability theory. The present volume may thus be of intrest to mathematicians speciali zing in the above-mentioned fields and also to everybody interested in the present state of potential theory as a whole.
Since the appearance, in 1970, of Vol. I of the present monograph 1370], the theory of bases in Banach spaces has developed substantially. Therefore, the present volume contains only Ch. III of the monograph, instead of Ch. Ill, IV and V, as was planned initially (cp. the table of contents of Vol. I). Since this volume is a continuation of Vol. I of the same monograph, we shall refer to the results of Vol. I directly as results of Ch. I or Ch. II (without specifying Vol. I). On the other hand, sometimes we shall also mention that certain results will be considered in Vol. III (Ch. IV, V). In spite of the many new advances made in this field, the statement in the Preface to Vol. I, that "the existing books on functional analysis contain only a few results on bases", remains still valid, with the exception of the recent book [248 a] of J. Lindenstrauss and L. Tzafriri. Since we have learned about [248 a] only in 1978, in this volume there are only references to previous works, instead of [248 a]; however, this will cause no inconvenience, since the intersec tion of the present volume with [248 a] is very small. Let us also mention the appearance, since 1970, of some survey papers on bases in Banach spaces (V. D. Milman [287], [288], C. W. McArthur [275]; M. I. Kadec [204], 3 and others).
Real problems concerning vibrations of elastic structures are among the most fascinating topics in mathematical and physical research as well as in applications in the engineering sciences. This book addresses the student familiar with the elementary mechanics of continua along with specialists. The authors start with an outline of the basic methods and lead the reader to research problems of current interest. An exposition of the method of spectra, asymptotic methods and perturbation is followed by applications to linear problems where elastic structures are coupled to fluids in bounded and unbounded domains, to radiation of immersed bodies, to local vibrations, to thermal effects and many more.
Systems and control theories use sophisticated operator theoretical methods. They also provide new ideas and problems in operator theory. As a consequence, the biannual MTNS (Mathematical Theory of Networks and Systems) conference is attended by many operator theorists. At the initiative of J.W. Helton and I. Gohberg, an International Workshop on Operator Theory and Applications (IWOTA) has been organized since the early 80s, as a satellite of MTNS. The articles in this volume originated from the IWOTA conference held at Indiana University, Bloomington, in June 1996. They represent most of the areas that were discussed at the workshop with some emphasis on modern interpolation theory, a topic which has seen much progress in recent years. The contributions were, as usual, subject to a thorough refereeing process and will bring the reader to the forefront of current research in this area. |
You may like...
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
|