![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Mechanism design is the field of economics that treats institutions and procedures as variables that can be selected in order to achieve desired objectives. An important aspect of a mechanism is the communication among its participants that it requires, which complements other design features such as incentives and complexity. A calculus-based theory of communication in mechanisms is developed in this book. The value of a calculus-based approach lies in its familiarity as well as the insight into mechanisms that it provides. Results are developed concerning (i) a first order approach to the construction of mechanisms, (ii) the range of mechanisms that can be used to achieve a given objective, as well as (iii) lower bounds on the required communication.
From the Preface: "There are three volumes. The first one contains a curriculum vitae, a "Breve Analyse des Travaux" and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposes 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg...Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation."
Translated from the popular French edition, the goal of the book is to provide a self-contained introduction to mean topological dimension, an invariant of dynamical systems introduced in 1999 by Misha Gromov. The book examines how this invariant was successfully used by Elon Lindenstrauss and Benjamin Weiss to answer a long-standing open question about embeddings of minimal dynamical systems into shifts. A large number of revisions and additions have been made to the original text. Chapter 5 contains an entirely new section devoted to the Sorgenfrey line. Two chapters have also been added: Chapter 9 on amenable groups and Chapter 10 on mean topological dimension for continuous actions of countable amenable groups. These new chapters contain material that have never before appeared in textbook form. The chapter on amenable groups is based on Folner's characterization of amenability and may be read independently from the rest of the book. Although the contents of this book lead directly to several active areas of current research in mathematics and mathematical physics, the prerequisites needed for reading it remain modest; essentially some familiarities with undergraduate point-set topology and, in order to access the final two chapters, some acquaintance with basic notions in group theory. Topological Dimension and Dynamical Systems is intended for graduate students, as well as researchers interested in topology and dynamical systems. Some of the topics treated in the book directly lead to research areas that remain to be explored.
Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert's 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert's 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior."
From the Preface: "There are three volumes. The first one contains a curriculum vitae, a "Breve Analyse des Travaux" and a Iist of publications, including books and seminars. In addition the volume contains all papers of H. Cartan on analytic functions published before 1939. The other papers on analytic functions, e.g. those on Stein manifolds and coherent sheaves, make up the second volume. The third volume contains, with a few exceptions, all further papers of H. Cartan; among them is a reproduction of exposes 2 to 11 of his 1954/55 Seminar on Eilenberg-MacLane algebras. Each volume is arranged in chronological order. The reader should be aware that these volumes do not fully reflect H. Cartan's work, a large part of which is also contained in his fifteen ENS-Seminars (1948-1964) and in his book "Homological Algebra" with S. Eilenberg...Still, we trust that mathematicians throughout the world will welcome the availability of the "Oeuvres" of a mathematician whose writing and teaching has had such an influence on our generation."
Niels Henrik Abel (1802-29) was one of the most prominent mathematicians in the first half of the nineteenth century. His pioneering work in diverse areas such as algebra, analysis, geometry and mechanics has made the adjective 'abelian' a commonplace in mathematical writing. These collected works, first published in two volumes in 1881 after careful preparation by the mathematicians Ludwig Sylow (1832-1918) and Sophus Lie (1842-99), contain some of the pillars of mathematical history. Volume 1 includes perhaps the most famous of Abel's results, namely his proof of the 'impossibility theorem', which states that the general fifth-degree polynomial is unsolvable by algebraic means. Also included in this volume is Abel's 'Paris memoir', which contains his many fundamental results on transcendental functions - in particular on elliptic integrals, elliptic functions, and what are known today as abelian integrals.
Niels Henrik Abel (1802-29) was one of the most prominent mathematicians in the first half of the nineteenth century. His pioneering work in diverse areas such as algebra, analysis, geometry and mechanics has made the adjective 'abelian' a commonplace in mathematical writing. These collected works, first published in two volumes in 1881 after careful preparation by the mathematicians Ludwig Sylow (1832-1918) and Sophus Lie (1842-99), contain some of the pillars of mathematical history. Volume 2 contains additional articles on elliptic functions and infinite series. It also includes extracts from Abel's letters, as well as detailed notes and commentary by Sylow and Lie on Abel's pioneering work.
'Et moi, ..., si j'avait Sll comment en revemr, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book was first published in 2001. It provides an introduction to Fourier analysis and partial differential equations and is intended to be used with courses for beginning graduate students. With minimal prerequisites the authors take the reader from fundamentals to research topics in the area of nonlinear evolution equations. The first part of the book consists of some very classical material, followed by a discussion of the theory of periodic distributions and the periodic Sobolev spaces. The authors then turn to the study of linear and nonlinear equations in the setting provided by periodic distributions. They assume only some familiarity with Banach and Hilbert spaces and the elementary properties of bounded linear operators. After presenting a fairly complete discussion of local and global well-posedness for the nonlinear Schroedinger and the Korteweg-de Vries equations, they turn their attention, in the two final chapters, to the non-periodic setting, concentrating on problems that do not occur in the periodic case.
This self-contained book is a graduate-level introduction for mathematicians and for physicists interested in the mathematical foundations of the field, and can be used as a textbook for a two-semester course on mathematical statistical mechanics. It assumes only basic knowledge of classical physics and, on the mathematics side, a good working knowledge of graduate-level probability theory. The book starts with a concise introduction to statistical mechanics, proceeds to disordered lattice spin systems, and concludes with a presentation of the latest developments in the mathematical understanding of mean-field spin glass models. In particular, progress towards a rigorous understanding of the replica symmetry-breaking solutions of the Sherrington-Kirkpatrick spin glass models, due to Guerra, Aizenman-Sims-Starr and Talagrand, is reviewed in some detail.
This book project was initiated at "The Tribute Workshop in Honour of Gunnar Sparr" and the follow-up workshop "Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08," held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's
sixty-fifth anniversary and more than forty years of exceptional
service to mathematics and its applications in engineering and
technology, mathematics and engineering education, as well as
interdisciplinary, industrial and international cooperation.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
During his short life Oswald Teichmuller wrote 34 papers, all reproduced in this volume. From the Preface: "Teichmuller's most influential paper was called "Extremale quasikonforme Abbildungen und quadratische Differentiale" (No. 20 in this collection). At the time of its appearance several special cases of extremal problems for quasiconformal mappings had already been solved, and Teichmuller was able to draw on a substantial fund of experience. Nevertheless, it was a remarkable feat to extract the common features of all the known examples and formulate a conjecture, now known as Teichmuller's theorem, which in an unexpected way connects the holomorphic second order differentials on a Riemann surface with the extremal quasiconformal mappings of that surface. The paper of 1939 contains a uniqueness proof, which is essentially still the only known proof, but not yet a rigorous existence proof. This did not prevent Teichmuller from laying the foundation of what has become known as the theory of Teichmuller spaces, a theory that has mushroomed to an extent that could not then have been foreseen. At the same time Teichmuller's work led to a deeper understanding of the fundamental role played by quasiconformal mappings in all of geometric function theory, and it foreshadowed the subsequent development of the theory of quasiconformal mappings in several dimensions...the whole theory of analytic functions of one complex variable has been greatly enriched by the inclusion of quasiconformal mappings, much of it based on Teichmuller's seminal ideas."
In this book we introduce the class of mappings of finite distortion as a generalization of the class of mappings of bounded distortion. Connections with models of nonlinear elasticity are also discussed. We study continuity properties, behavior of our mappings on null sets, topological properties like openness and discreteness, regularity of the potential inverse mappings and many other aspects.
This two-part volume contains numerous examples and insights on various topics. The authors have taken pains to present the material rigorously and coherently. This book will be immensely useful to mathematicians and graduate students working in algebraic geometry, arithmetic algebraic geometry, complex analysis and related fields.
This innovative textbook introduces a new pattern-based approach to learning proof methods in the mathematical sciences. Readers will discover techniques that will enable them to learn new proofs across different areas of pure mathematics with ease. The patterns in proofs from diverse fields such as algebra, analysis, topology and number theory are explored. Specific topics examined include game theory, combinatorics and Euclidean geometry, enabling a broad familiarity. The author, an experienced lecturer and researcher renowned for his innovative view and intuitive style, illuminates a wide range of techniques and examples from duplicating the cube to triangulating polygons to the infinitude of primes to the fundamental theorem of algebra. Intended as a companion for undergraduate students, this text is an essential addition to every aspiring mathematician's toolkit.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
Especially among Japanese mathematicians Mitio Nagumo (1905-1995) is regarded as one of the greatest pioneers in research on differential equations. However, so far most of his papers have only been published in Japanese journals and were unavailable in the West. This Collected Papers volume contains practically all mathematical papers Nagumo wrote in languages other than Japanese and will be a basic reference volume and essential working tool for every library and for many active mathematicians in differential equations, topology and differential geometry. In addition, papers that were originally published in Japanese were translated especially for this edition. There are three main sections in this book, devoted to ordinary differential equations, partial differential equations and other equations. Each section is accompanied by a detailed commentary provided by the editors.
The aim of this graduate-level text is to equip the reader with the basic tools and techniques needed for research in various areas of geometric analysis. Throughout, the main theme is to present the interaction of partial differential equations and differential geometry. More specifically, emphasis is placed on how the behavior of the solutions of a PDE is affected by the geometry of the underlying manifold and vice versa. For efficiency the author mainly restricts himself to the linear theory and only a rudimentary background in Riemannian geometry and partial differential equations is assumed. Originating from the author's own lectures, this book is an ideal introduction for graduate students, as well as a useful reference for experts in the field.
This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-trace formulas, coupling of irreducible tensors, rotation of tensors. Constitutive laws for optical, elastic and viscous properties of anisotropic media are dealt with. The anisotropic media include crystals, liquid crystals and isotropic fluids, rendered anisotropic by external orienting fields. The dynamics of tensors deals with phenomena of current research. In the last section, the 3D Maxwell equations are reformulated in their 4D version, in accord with special relativity.
This book introduces two most important aspects of modern analysis: the theory of measure and integration and the theory of Banach and Hilbert spaces. It is designed to serve as a text for first-year graduate students who are already familiar with some analysis as given in a book similar to Apostol's Mathematical Analysis. t This book treats in sufficient detail most relevant topics in the area of real and functional analysis that can be included in a book of this nature and size and at the level indicated above. It can serve as a text for a solid one-year course entitled "Measure and Integration Theory" or a com prehensive one-year course entitled "Banach Spaces, Hilbert Spaces, and Spectral Theory. " For the latter alternative, the student is, of course, required to have some knowledge of measure and integration theory. The breadth of the book gives the instructor enough flexibility to choose what is best suited for his/her class. Specifically the following alternatives are available: (a) A one-year course on "Measure and Integration" utilizing Chapters 1 (Sections l. l-1. 3 and 1. 6), 2, 3, 4, portions of 5 (information on Lp spaces), and portions of 7 (left to the discretion of the teacher). (b) A one-year course in "Functional Analysis" utilizing Chapters 1 (Sections 1. 4-1. 6), 5, 6, 7 (Sections 7. 4 and 7. 6), and the Ap pendix. t T. M. Apostol, Mathematical Analysis, 2nd ed., Addison-Wesley (1974)."
As long as a branch of knowledge offers an abundance of problems, it is full of vitality. David Hilbert Over the last 15 years I have given lectures on a variety of problems in nonlinear functional analysis and its applications. In doing this, I have recommended to my students a number of excellent monographs devoted to specialized topics, but there was no complete survey-type exposition of nonlinear functional analysis making available a quick survey to the wide range of readers including mathematicians, natural scientists, and engineers who have only an elementary knowledge of linear functional analysis. I have tried to close this gap with my five-part lecture notes, the first three parts of which have been published in the Teubner-Texte series by Teubner-Verlag, Leipzig, 1976, 1977, and 1978. The present English edition was translated from a completely rewritten manuscript which is significantly longer than the original version in the Teubner-Texte series. The material is organized in the following way: Part I: Fixed Point Theorems. Part II: Monotone Operators. Part III: Variational Methods and Optimization. Parts IV jV: Applications to Mathematical Physics. The exposition is guided by the following considerations: (a) What are the supporting basic ideas and what intrinsic interrelations exist between them? (/3) In what relation do the basic ideas stand to the known propositions of classical analysis and linear functional analysis? ( y) What typical applications are there? Vll Preface viii Special emphasis is placed on motivation.
Two-fluid dynamics is a challenging subject rich in physics and prac tical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actu ally work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This proce dure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.
Originally published in 1977, this volume is concerned with the relationship between symmetries of a linear second-order partial differential equation of mathematical physics, the coordinate systems in which the equation admits solutions via separation of variables, and the properties of the special functions that arise in this manner. Some group-theoretic twists in the ancient method of separation of variables that can be used to provide a foundation for much of special function theory are shown. In particular, it is shown explicitly that all special functions that arise via separation of variables in the equations of mathematical physics can be studied using group theory. |
You may like...
Managing the Web of Things - Linking the…
Michael Sheng, Yongrui Qin, …
Paperback
R1,901
Discovery Miles 19 010
Fog Computing in the Internet of Things…
Amir M. Rahmani, Pasi Liljeberg, …
Hardcover
R3,516
Discovery Miles 35 160
|