![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
Most books on linear operators are not easy to follow for students and researchers without an extensive background in mathematics. Self-contained and using only matrix theory, Invitation to Linear Operators: From Matricies to Bounded Linear Operators on a Hilbert Space explains in easy-to-follow steps a variety of interesting recent results on linear operators on a Hilbert space. The author first states the important properties of a Hilbert space, then sets out the fundamental properties of bounded linear operators on a Hilbert space. The final section presents some of the more recent developments in bounded linear operators.
This book explores the use of the concept of biorthogonality and discusses the various recurrence relations for the generalizations of the method of moments, the method of Lanczos, and the biconjugate gradient method. It is helpful for researchers in numerical analysis and approximation theory.
Nonlinear Bayesian modelling is a relatively new field, but one that has seen a recent explosion of interest. Nonlinear models offer more flexibility than those with linear assumptions, and their implementation has now become much easier due to increases in computational power. Bayesian methods allow for the incorporation of prior information, allowing the user to make coherent inference. Bayesian Methods for Nonlinear Classification and Regression is the first book to bring together, in a consistent statistical framework, the ideas of nonlinear modelling and Bayesian methods.
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics. Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem, the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
A selection of some important topics in complex analysis, intended as a sequel to the author's Classical complex analysis (see preceding entry). The five chapters are devoted to analytic continuation; conformal mappings, univalent functions, and nonconformal mappings; entire function; meromorphic fu
CR Manifolds and the Tangential Cauchy Riemann Complex provides an elementary introduction to CR manifolds and the tangential Cauchy-Riemann Complex and presents some of the most important recent developments in the field. The first half of the book covers the basic definitions and background material concerning CR manifolds, CR functions, the tangential Cauchy-Riemann Complex and the Levi form. The second half of the book is devoted to two significant areas of current research. The first area is the holomorphic extension of CR functions. Both the analytic disc approach and the Fourier transform approach to this problem are presented. The second area of research is the integral kernal approach to the solvability of the tangential Cauchy-Riemann Complex. CR Manifolds and the Tangential Cauchy Riemann Complex will interest students and researchers in the field of several complex variable and partial differential equations.
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
This book exclusively deals with the study of almost convergence and statistical convergence of double sequences. The notion of "almost convergence" is perhaps the most useful notion in order to obtain a weak limit of a bounded non-convergent sequence. There is another notion of convergence known as the "statistical convergence", introduced by H. Fast, which is an extension of the usual concept of sequential limits. This concept arises as an example of "convergence in density" which is also studied as a summability method. Even unbounded sequences can be dealt with by using this method. The book also discusses the applications of these non-matrix methods in approximation theory. Written in a self-contained style, the book discusses in detail the methods of almost convergence and statistical convergence for double sequences along with applications and suitable examples. The last chapter is devoted to the study convergence of double series and describes various convergence tests analogous to those of single sequences. In addition to applications in approximation theory, the results are expected to find application in many other areas of pure and applied mathematics such as mathematical analysis, probability, fixed point theory and statistics.
The subject of analysis on Lie groups comprises an eclectic group of topics which can be treated from many different perspectives. This self-contained text concentrates on the perspective of analysis, to the topics and methods of non-commutative harmonic analysis, assuming only elementary knowledge of linear algebra and basic differential calculus. The author avoids unessential technical discussions and instead describes in detail many interesting examples, including formulae which have not previously appeared in book form. Topics covered include the Haar measure and invariant integration, spherical harmonics, Fourier analysis and the heat equation, Poisson kernel, the Laplace equation and harmonic functions. Perfect for advanced undergraduates and graduates in geometric analysis, harmonic analysis and representation theory, the tools developed will also be useful for specialists in stochastic calculation and the statisticians. With numerous exercises and worked examples, the text is ideal for a graduate course on analysis on Lie groups.
This book deals with the determinants of linear operators in Euclidean, Hilbert and Banach spaces. Determinants of operators give us an important tool for solving linear equations and invertibility conditions for linear operators, enable us to describe the spectra, to evaluate the multiplicities of eigenvalues, etc. We derive upper and lower bounds, and perturbation results for determinants, and discuss applications of our theoretical results to spectrum perturbations, matrix equations, two parameter eigenvalue problems, as well as to differential, difference and functional-differential equations.
This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. "Excursions in the History of Mathematics" was written with several goals in mind: to arouse mathematics teachers' interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses."
Chapter 1 poses 134 problems concerning real and complex numbers, chapter 2 poses 123 problems concerning sequences, and so it goes, until in chapter 9 one encounters 201 problems concerning functional analysis. The remainder of the book is given over to the presentation of hints, answers or referen
This tried-and-true text from Allyn Washington preserves the author's highly regarded approach to technical math, while enhancing the integration of technology. Appropriate for a two- to three- semester course, BASIC TECHNICAL MATHEMATICS WITH CALCULUS shows how algebra, trigonometry, and basic calculus are used on the job. It addresses a vast number of technical and pre-engineering fields, including computer design, electronics, solar energy, lasers fiber optics, and the environment. Known for its exceptional problem sets and applied material, the book offers practice exercises, writing exercises, word problems, and practice tests. This edition features more technical applications, over 2300 new exercises, and additional graphing calculator screens.
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to significant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of different temporal and spatial scales and the presence of contacts among different components through (irregular) interfaces that often connect media with different characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.
This book attempts to put together the works of a wide range of mathematical scientists. It consists of the proceedings of the Seventh Conference on "Nonlinear Analysis and Applications" including papers that were delivered as invited talks and research reports.
Probability theory has been extraordinarily successful at describing a variety of phenomena, from the behaviour of gases to the transmission of messages, and is, besides, a powerful tool with applications throughout mathematics. At its heart are a number of concepts familiar in one guise or another to many: Gauss' bell-shaped curve, the law of averages, and so on, concepts that crop up in so many settings they are in some sense universal. This universality is predicted by probability theory to a remarkable degree. This book explains that theory and investigates its ramifications. Assuming a good working knowledge of basic analysis, real and complex, the author maps out a route from basic probability, via random walks, Brownian motion, the law of large numbers and the central limit theorem, to aspects of ergodic theorems, equilibrium and nonequilibrium statistical mechanics, communication over a noisy channel, and random matrices. Numerous examples and exercises enrich the text.
This book contains expanded versions of the talks given at the conference held in honour of professor Ky Fan in California in 1985, as well as papers on nonlinear and convex analysis as contributions to Ky Fan. It also includes a list of publications by Ky Fan.
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics. Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem, the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.
This book contains papers on algebra, functional analysis, and general topology, with a strong interaction with set theoretic axioms and involvement with category theory, presented in the special session on Rings of Continuous Functions held in 1982 in Cincinnati, Ohio.
This volume contains versions of invited addresses and communications for the First Chilean Symposium of Mathematics, revealing the results of the mathematical advances in areas such as stochastic analysis, solutions of differential equations, and differential synthetic geometry and probability.
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics. Specifically, it discusses global aspects of elliptic PDEs, Berezin-Toeplitz quantization, the stability of solitary waves, and sub-Riemannian geometry. The contributions are based on lectures given by distinguished experts at a summer school in Goettingen. The authors explain fundamental concepts and ideas and present them clearly. Starting from basic notions, these course notes take the reader to the point of current research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. All contributions are of interest to researchers in the respective fields, but they are also accessible to graduate students.
This first title in SIAM's Spotlights book series is about the interplay between modeling, analysis, discretization, matrix computation, and model reduction. The authors link PDE analysis, functional analysis, and calculus of variations with matrix iterative computation using Krylov subspace methods and address the challenges that arise during formulation of the mathematical model through to efficient numerical solution of the algebraic problem. The book's central concept, preconditioning of the conjugate gradient method, is traditionally developed algebraically using the preconditioned finite-dimensional algebraic system. In this text, however, preconditioning is connected to the PDE analysis, and the infinite-dimensional formulation of the conjugate gradient method and its discretization and preconditioning are linked together. This text challenges commonly held views, addresses widespread misunderstandings, and formulates thought-provoking open questions for further research.
This classic work has been a unique resource for thousands of mathematicians, scientists and engineers since its first appearance in 1902. Never out of print, its continuing value lies in its thorough and exhaustive treatment of special functions of mathematical physics and the analysis of differential equations from which they emerge. The book also is of historical value as it was the first book in English to introduce the then modern methods of complex analysis. This fifth edition preserves the style and content of the original, but it has been supplemented with more recent results and references where appropriate. All the formulas have been checked and many corrections made. A complete bibliographical search has been conducted to present the references in modern form for ease of use. A new foreword by Professor S.J. Patterson sketches the circumstances of the book's genesis and explains the reasons for its longevity. A welcome addition to any mathematician's bookshelf, this will allow a whole new generation to experience the beauty contained in this text. |
![]() ![]() You may like...
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,577
Discovery Miles 25 770
Single Variable Calculus, Metric Edition
James Stewart, Saleem Watson, …
Hardcover
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,484
Discovery Miles 34 840
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,607
Discovery Miles 36 070
Measure Theory and Fine Properties of…
Lawrence Craig Evans, Ronald F. Gariepy
Hardcover
R2,640
Discovery Miles 26 400
|