![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute - not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations. Solving Transcendental Equations is unique in that it:* Is the first book to describe the Chebyshev-proxy rootfinder, which is the most reliable way to find all zeros of a smooth function on the interval, and the very reliable spectrally enhanced Weyl bisection/marching triangles method for bivariate rootfinding. * Includes three chapters on analytical methods - explicit solutions, regular pertubation expansions, and singular perturbation series (including hyperasymptotics) - unlike other books that give only numerical algorithms for solving algebraic and transcendental equations.
Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems.
For a three-semester or four-quarter calculus course covering single variable and multivariable calculus for mathematics, engineering, and science majors. This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students' geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows. The groundbreaking eBook contains over 650 Interactive Figures that can be manipulated to shed light on key concepts. This text offers a superior teaching and learning experience.Here's how: *A robust MyMathLab(r) course contains more than 7,000 assignable exercises, an eBook with 650 Interactive Figures, and built-in tutorials so students can get help when they need it. *Reflects how students use a textbook-they start with the exercises and flip back for help if they need it. *Organization and presentation of content facilitates learning of key concepts, skills, and applications.
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics. Convex Analysis introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically. Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.
Since the appearance of Banach algebra theory, the interaction between the theories ofBanach algebras with involution and that of bounded linear operators on a Hilbert space hasbeen extensively developed. The connections of Banach algebras with the theory ofbounded linear operators on a Hilbert space have also evolved, and Calkin Algebras andAlgebras of Operators on Banach Spaces provides an introduction to this set of ideas.The book begins with a treatment of the classical Riesz-Schauder theory which takesadvantage of the most recent developments-some of this material appears here for the firsttime. Although the reader should be familiar with the basics of functional analysis, anintroductory chapter on Banach algebras has been included. Other topics dealt with includeFredholm operators, semi-Fredholm operators, Riesz operators. and Calkin algebras.This volume will be of direct interest to both graduate students and research mathematicians.
This book presents a theory of necessary conditions for an extremum, including formal conditions for an extremum and computational methods. It states the general results of the theory and shows how these results can be particularized to specific problems.
This unique book explores the connections between the geometry of mappings and many important areas of modern mathematics such as harmonic and non-linear analysis, the theory of partial differential equations, conformal geometry and topology. The book contains much new material not published elsewhere and provides students and researchers in many areas with a comprehensive and up to date account of the subject as a whole.
A step-by-step guide to computing and graphics in regression analysis
This is a textbook for advanced undergraduate students and beginning graduate students in applied mathematics. It presents the basic mathematical foundations of stochastic analysis (probability theory and stochastic processes) as well as some important practical tools and applications (e.g., the connection with differential equations, numerical methods, path integrals, random fields, statistical physics, chemical kinetics, and rare events). The book strikes a nice balance between mathematical formalism and intuitive arguments, a style that is most suited for applied mathematicians. Readers can learn both the rigorous treatment of stochastic analysis as well as practical applications in modeling and simulation. Numerous exercises nicely supplement the main exposition.
this monographis based on two courses in computational mathematics and operative research, which were given by the author in recent years to doctorate and PhD students. The text focuses on an aspect of the theory of inverse problems, which is usually referred to as identification of parameters (numbers, vectors, matrices, functions) appearing in differential- or integrodifferential- equations. The parameters of such equations are either quite unknown or partially unknown, however knowledge about these is usually essential as they describe the intrinsic properties of the material or substance under consideration.
The Second Course in Statistics is an increasingly important offering since more students are arriving at college having taken AP Statistics in high school. Mendenhall/Sincich's A Second Course in Statistics is the perfect book for courses that build on the knowledge students gain in AP Statistics, or the freshman Introductory Statistics course. A Second Course in Statistics: Regression Analysis, Seventh Edition, focuses on building linear statistical models and developing skills for implementing regression analysis in real situations. This text offers applications for engineering, sociology, psychology, science, and business. The authors use real data and scenarios extracted from news articles, journals, and actual consulting problems to show how to apply the concepts. In addition, seven case studies, now located throughout the text after applicable chapters, invite students to focus on specific problems, and are suitable for class discussion.
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
The Student Solutions Manual provides completely worked-out solutions to all odd-numbered problems in the text.
Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schroedinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum
This concise, self-contained textbook gives an in-depth look at problem-solving from a mathematician's point-of-view. Each chapter builds off the previous one, while introducing a variety of methods that could be used when approaching any given problem. Creative thinking is the key to solving mathematical problems, and this book outlines the tools necessary to improve the reader's technique. The text is divided into twelve chapters, each providing corresponding hints, explanations, and finalization of solutions for the problems in the given chapter. For the reader's convenience, each exercise is marked with the required background level. This book implements a variety of strategies that can be used to solve mathematical problems in fields such as analysis, calculus, linear and multilinear algebra and combinatorics. It includes applications to mathematical physics, geometry, and other branches of mathematics. Also provided within the text are real-life problems in engineering and technology. Thinking in Problems is intended for advanced undergraduate and graduate students in the classroom or as a self-study guide. Prerequisites include linear algebra and analysis.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This book collects more than thirty contributions in memory of Wolfgang Schwarz, most of which were presented at the seventh International Conference on Elementary and Analytic Number Theory (ELAZ), held July 2014 in Hildesheim, Germany. Ranging from the theory of arithmetical functions to diophantine problems, to analytic aspects of zeta-functions, the various research and survey articles cover the broad interests of the well-known number theorist and cherished colleague Wolfgang Schwarz (1934-2013), who contributed over one hundred articles on number theory, its history and related fields. Readers interested in elementary or analytic number theory and related fields will certainly find many fascinating topical results among the contributions from both respected mathematicians and up-and-coming young researchers. In addition, some biographical articles highlight the life and mathematical works of Wolfgang Schwarz.
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief Jurgen Appell, Wurzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Torun, Poland Vicentiu D. Radulescu, Krakow, Poland Simeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)
Generation of Multivariate Hermite Interpolating Polynomials advances the study of approximate solutions to partial differential equations by presenting a novel approach that employs Hermite interpolating polynomials and bysupplying algorithms useful in applying this approach. Organized into three sections, the book begins with a thorough examination of constrained numbers, which form the basis for constructing interpolating polynomials. The author develops their geometric representation in coordinate systems in several dimensions and presents generating algorithms for each level number. He then discusses their applications in computing the derivative of the product of functions of several variables and in the construction of expression for n-dimensional natural numbers. Section II focuses on the construction of Hermite interpolating polynomials, from their characterizing properties and generating algorithms to a graphical analysis of their behavior. The final section of the book is dedicated to the application of Hermite interpolating polynomials to linear and nonlinear differential equations in one or several variables. Of particular interest is an example based on the author's thermal analysis of the space shuttle during reentry to the earth's atmosphere, wherein he uses the polynomials developed in the book to solve the heat transfer equations for the heating of the lower surface of the wing.
Sharkovsky's Theorem, Li and Yorke's "period three implies chaos" result, and the (3x+1) conjecture are beautiful and deep results that demonstrate the rich periodic character of first-order, nonlinear difference equations. To date, however, we still know surprisingly little about higher-order nonlinear difference equations. During the last ten years, the authors of this book have been fascinated with discovering periodicities in equations of higher order which for certain values of their parameters have one of the following characteristics: 1. Every solution of the equation is periodic with the same period. 2. Every solution of the equation is eventually periodic with a prescribed period. 3. Every solution of the equation converges to a periodic solution with the same period. This monograph presents their findings along with some thought-provoking questions and many open problems and conjectures worthy of investigation. The authors also propose investigation of the global character of solutions of these equations for other values of their parameters and working toward a more complete picture of the global behavior of their solutions. With the results and discussions it presents, Periodicities in Nonlinear Difference Equations places a few more stones in the foundation of the basic theory of nonlinear difference equations. Researchers and graduate students working in difference equations and discrete dynamical systems will find much to intrigue them and inspire further work in this area.
This text offers a selection of papers on singularity theory presented at the Sixth Workshop on Real and Complex Singularities held at ICMC-USP, Brazil. It should help students and specialists to understand results that illustrate the connections between singularity theory and related fields. The authors discuss irreducible plane curve singularities, openness and multitransversality, the distribution Afs and the real asymptotic spectrum, deformations of boundary singularities and non-crystallographic coxeter groups, transversal Whitney topology and singularities of Haefliger foliations, the topology of hypersurface singularities, polar multiplicities and equisingularity of map germs from C3 to C4, and topological invariants of stable maps from a surface to the plane from a global viewpoint.
Traditionally, neural networks and wavelet theory have been two separate disciplines, taught separately and practiced separately. In recent years the offspring of wavelet theory and neural networks-wavelet networks-have emerged and grown vigorously both in research and applications. Yet the material needed to learn or teach wavelet networks has remained scattered in various research monographs.
Mathematics is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications-some quite surprising-in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields. |
You may like...
Preconditioning and the Conjugate…
Josef Malek, Zdenek Strakos
Paperback
R1,250
Discovery Miles 12 500
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Calculus, International Metric Edition
Bruce Edwards, Ron Larson
Paperback
|