![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Scilab and its Scicos block diagram graphical editor, with a special emphasis on modeling and simulation tools. The first part is a detailed Scilab tutorial, and the second is dedicated to modeling and simulation of dynamical systems in Scicos. The concepts are illustrated through numerous examples, and all code used in the book is available to the reader.
The International Society for Analysis, its Applications and Computation (ISAAC) has held its international congresses biennially since 1997. This proceedings volume reports on the progress in analysis, applications and computation in recent years as covered and discussed at the 7th ISAAC Congress. This volume includes papers on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 500 participants from almost 60 countries attending the congress, the book comprises a broad selection of contributions in different topics.
This book contains papers presented at the Chicago Conference on Harmonic Analysis in 1981. The papers are compiled under topics, namely trigonometric series, singular integrals and pseudodifferential operators, hardy spaces, differentiation theory, and partial differential equations.
Addressed mainly to physicist and chemical physicist, this textbook is the result of a broad compilation of current knowledge on analytical properties of Airy functions. In particular, the calculus implying the Airy functions is developed with care. In the latter chapters, examples are given to succinctly illustrate the use of Airy functions in classical and quantum physics. The physicist, for instance in fluid mechanics, can find what he is looking for, in the references for works of molecular physics or in physics of surfaces, and vice versa. The knowledge on Airy functions is frequently reviewed. The reason may be found in the need to express a physical phenomenon in terms of an effective and comprehensive analytical form for the whole scientific community.
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators. After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions. This work is one of the first to systematically take the operator approach to the theory of analytic functions.
This book is the third in a series based on conferences sponsored
by the Metroplex Institute for Neural Dynamics, an
interdisciplinary organization of neural network professionals in
academia and industry. The topics selected are of broad interest to
both those interested in designing machines to perform intelligent
functions and those interested in studying how these functions are
actually performed by living organisms and generate discussion of
basic and controversial issues in the study of mind.
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Brings Readers Up to Speed in This Important and Rapidly Growing Area Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories. After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures. Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.
Presents the basic theory of real analysis. The algebraic and order properties of the real number system are presented in a simpler fashion than in the previous edition.
The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
Metrics, Norms and Integrals is a textbook on contemporary analysis based on the author's lectures given at the University of Melbourne for over two decades. It covers three main topics: metric and topological spaces, functional analysis, and the theory of the Lebesgue integral on measure spaces. This self-contained text contains a number of original presentations, including an early introduction of pseudometric spaces to motivate general topologies, an innovative introduction to the Lebesgue integral, and a discussion on the use of the Newton integral. It is thus a valuable book to inform and stimulate both undergraduate and graduate students.
This book pioneers a nonlinear Fredholm theory in a general class of spaces called polyfolds. The theory generalizes certain aspects of nonlinear analysis and differential geometry, and combines them with a pinch of category theory to incorporate local symmetries. On the differential geometrical side, the book introduces a large class of `smooth' spaces and bundles which can have locally varying dimensions (finite or infinite-dimensional). These bundles come with an important class of sections, which display properties reminiscent of classical nonlinear Fredholm theory and allow for implicit function theorems. Within this nonlinear analysis framework, a versatile transversality and perturbation theory is developed to also cover equivariant settings. The theory presented in this book was initiated by the authors between 2007-2010, motivated by nonlinear moduli problems in symplectic geometry. Such problems are usually described locally as nonlinear elliptic systems, and they have to be studied up to a notion of isomorphism. This introduces symmetries, since such a system can be isomorphic to itself in different ways. Bubbling-off phenomena are common and have to be completely understood to produce algebraic invariants. This requires a transversality theory for bubbling-off phenomena in the presence of symmetries. Very often, even in concrete applications, geometric perturbations are not general enough to achieve transversality, and abstract perturbations have to be considered. The theory is already being successfully applied to its intended applications in symplectic geometry, and should find applications to many other areas where partial differential equations, geometry and functional analysis meet. Written by its originators, Polyfold and Fredholm Theory is an authoritative and comprehensive treatise of polyfold theory. It will prove invaluable for researchers studying nonlinear elliptic problems arising in geometric contexts.
Dimensional analysis is a magical way of finding useful results with almost no effort. It makes it possible to bring together the results of experiments and computations in a concise but exact form, so that they can be used efficiently and economically to make predictions. It takes advantage of the fact that phenomena go their way independently of the units we measure them with, because the units have nothing to do with the underlying physics. This simple idea turns out to be unexpectedly powerful.Students often fail to gain from dimensional analysis, because bad teaching has led them to suppose it cannot be used to derive new results, and can only confirm results that have been secured by some other route. That notion is false. This book demonstrates what can be done with dimensional analysis through a series of examples, starting with Pythagoras' theorem and the simple pendulum, and going on to a number of practical examples, many from the author's experience in ocean engineering. In parallel, the book explains the underlying theory, starting with Vaschy's elegant treatment, whilst avoiding unnecessary complexity. It also explores the use and misuse of models, which can be useful but can also be seriously misleading.
Dimensional analysis is a magical way of finding useful results with almost no effort. It makes it possible to bring together the results of experiments and computations in a concise but exact form, so that they can be used efficiently and economically to make predictions. It takes advantage of the fact that phenomena go their way independently of the units we measure them with, because the units have nothing to do with the underlying physics. This simple idea turns out to be unexpectedly powerful.Students often fail to gain from dimensional analysis, because bad teaching has led them to suppose it cannot be used to derive new results, and can only confirm results that have been secured by some other route. That notion is false. This book demonstrates what can be done with dimensional analysis through a series of examples, starting with Pythagoras' theorem and the simple pendulum, and going on to a number of practical examples, many from the author's experience in ocean engineering. In parallel, the book explains the underlying theory, starting with Vaschy's elegant treatment, whilst avoiding unnecessary complexity. It also explores the use and misuse of models, which can be useful but can also be seriously misleading.
Since the 1950s control theory has established itself as a major mathematical discipline, particularly suitable for application in a number of research fields, including advanced engineering design, economics and the medical sciences. However, since its emergence, there has been a need to rethink and extend fields such as calculus of variations, differential geometry and nonsmooth analysis, which are closely tied to research on applications. Today control theory is a rich source of basic abstract problems arising from applications, and provides an important frame of reference for investigating purely mathematical issues. In many fields of mathematics, the huge and growing scope of activity has been accompanied by fragmentation into a multitude of narrow specialties. However, outstanding advances are often the result of the quest for unifying themes and a synthesis of different approaches. Control theory and its applications are no exception. Here, the interaction between analysis and geometry has played a crucial role in the evolution of the field. This book collects some recent results, highlighting geometrical and analytical aspects and the possible connections between them. Applications provide the background, in the classical spirit of mutual interplay between abstract theory and problem-solving practice.
Although the theory behind solitary waves of strain shows that they hold significant promise in nondestructive testing and a variety of other applications, an enigma has long persisted-the absence of observable elastic solitary waves in practice. Inspired by this apparent contradiction, Strain Solitons in Solids and How to Construct Them refines the existing theory, explores how to construct a powerful deformation pulse in a waveguide without plastic flow or fracture, and proposes a direct method of strain soliton generation, detection, and observation. The author focuses on the theory, simulation, generation, and propagation of strain solitary waves in a nonlinearly elastic, straight cylindrical rod under finite deformations. He introduces the general theory of wave propagation in nonlinearly elastic solids and shows, from first principles, how its main ideas can lead to successful experiments. In doing so, he develops a new approach to solving the corresponding doubly dispersive equation (DDE) with dissipative terms, leading to new explicit and exact solutions. He also shows that the method is applicable to a variety of nonlinear problems. First discovered in virtual reality, nonlinear waves and solitons in solids are finally moving into the genuine reality of physics, mechanics, and engineering. Strain Solitons in Solids and How to Construct Them shows how to balance the mathematics of the problem with the application of the results to experiments and ultimately to generating and observing solitons in solids.
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers with comprising edges and other complex cavity features. It is an authoritative account of mathematical developments over the last two decades that provides benchmarks against which solutions obtained by numerical methods can be verified. The first volume, Canonical Structures in Potential Theory, develops the mathematics, solving mixed boundary potential problems for structures with cavities and edges. The second volume, Acoustic and Electromagnetic Diffraction by Canonical Structures, examines the diffraction of acoustic and electromagnetic waves from several classes of open structures with edges or cavities. Together these volumes present an authoritative and unified treatment of potential theory and diffraction-the first complete description quantifying the scattering mechanisms in complex structures.
"The Art of Proof" is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
This established textbook is noted for its coverage of optimization methods that are of practical importance. It provides a thorough treatment of standard methods such as linear and quadratic programming, Newton-like methods and the conjugate gradient method. The theoretical aspects of the subject include an extended treatment of optimality conditions and the significance of Lagrange multipliers. The relevance of convexity theory to optimization is also not neglected. A significant proportion of the book is devoted to the solution of nonlinear problems, with an authoritative treatment of current methodology. Thus state of the art techniques such as the BFGS method, trust region methods and the SQP method are described and analysed. Other features are an extensive treatment of nonsmooth optimization and the L1 penalty function. Contents Part 1 Unconstrained Optimization Part 2 Constrained Optimization
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available.
The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.
Including previously unpublished, original research material, this comprehensive book analyses topics of fundamental importance in theoretical fluid mechanics. The five papers appearing in this volume are centred around the mathematical theory of the Navier-Stokes equations (incompressible and compressible) and certain selected non-Newtonian modifications. |
You may like...
A Reformulation-Linearization Technique…
Hanif D. Sherali, W. P. Adams
Hardcover
R5,868
Discovery Miles 58 680
Hysteresis and Phase Transitions
Martin Brokate, Jurgen Sprekels
Hardcover
R2,707
Discovery Miles 27 070
Numerical Analysis - A Mathematical…
Michelle Schatzman, John Taylor
Hardcover
R5,310
Discovery Miles 53 100
Quantum Analogues: From Phase…
William Unruh, Ralf Schutzhold
Hardcover
R1,574
Discovery Miles 15 740
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
|