![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
For a three-semester or four-quarter calculus course covering single variable and multivariable calculus for mathematics, engineering, and science majors. This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students' geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows. The groundbreaking eBook contains over 650 Interactive Figures that can be manipulated to shed light on key concepts. This text offers a superior teaching and learning experience.Here's how: *A robust MyMathLab(r) course contains more than 7,000 assignable exercises, an eBook with 650 Interactive Figures, and built-in tutorials so students can get help when they need it. *Reflects how students use a textbook-they start with the exercises and flip back for help if they need it. *Organization and presentation of content facilitates learning of key concepts, skills, and applications.
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics - such as the classical central limit theorem - which are usually formulated in terms of convergence in distribution. Originated by Alfred Renyi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.
A number of texts have recently become available which provide good general introductions to p-Adic numbers and p-Adic analysis. However, there is at present a gap between such books and the sophisticated applications in the research literature. The aim of this book is to bridge this gulf by providing a collection of intermediate level articles on various applications of p-Adic techniques throughout mathematics. The idea for producing such a volume was suggested by Oxford University Press in connection with a three day meeting `p-Adic Methods and their Applications' held at Manchester University in September 1989 and which have received financial support from the London Mathematical Society. Some of these articles grew out of talks given at this conference, others were written by invitation especially for this volume. All contributions were refereed with a particular view to their suitability for inclusion in such a book.
This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Gruss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Gruss and Ostrowski type inequalities involving s-convexity of functions; and also examines the general case when several functions are involved. Then, it presents the general fractional Hermite-Hadamard type inequalities using m-convexity and (s, m)-convexity. Finally, it introduces the reduction method in fractional calculus and its connection to fractional Ostrowski type inequalities is studied.This book's results are expected to find applications in many areas of pure and applied mathematics, especially in difference equations and fractional differential equations. The chapters are self-contained and can be read independently, and advanced courses can be taught out of it. It is suitable for researchers, graduate students, seminars of the above subjects, and serves well as an invaluable resource for all science libraries.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
A discrete event system (DES) is an abstraction of many engineering and service systems characterized by event-driven dynamics. Examples include computer systems, communication networks, airports and highways. The evolution of DES is governed by events, typically occurring at random time periods. Developing new mathematical tools to study discrete event operations research, this study discusses the two lines of investigation in DES research that have emerged: logical/qualitative issues and temporal/quantitative analysis.
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
This book acquaints the reader with the esental ideas of K-homology and develops some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps.
Summability methods are transformations that map sequences (or functions) to sequences (or functions). A prime requirement for a "good" summability method is that it preserves convergence. Unless it is the identity transformation, it will do more: it will transform some divergent sequences to convergent sequences. An important type of theorem is called a Tauberian theorem. Here, we know that a sequence is summable. The sequence satisfies a further property that implies convergence. Borel's methods are fundamental to a whole class of sequences to function methods. The transformation gives a function that is usually analytic in a large part of the complex plane, leading to a method for analytic continuation. These methods, dated from the beginning of the 20th century, have recently found applications in some problems in theoretical physics.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on "Stochastics of Environmental and Financial Economics (SEFE)", being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
This volume explores Diophantine approximation on smooth manifolds embedded in Euclidean space, developing a coherent body of theory comparable to that of classical Diophantine approximation. In particular, the book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. After setting out the necessary background material, the authors give a full discussion of Hausdorff dimension and its uses in Diophantine approximation. They employ a wide range of techniques from the number theory arsenal to obtain the upper and lower bounds required, highlighting the difficulty of some of the questions considered. The authors then go on to consider briefly the p-adic case, and conclude with a chapter on some applications of metric Diophantine approximation. All researchers with an interest in Diophantine approximation will want to have this book in their personal libraries.
This book is an introduction to real analysis for a one-semester course aimed at students who have completed the calculus sequence and preferably one other course, such as linear algebra. It does not assume any specific knowledge and starts with all that is needed from sets, logic, and induction. Then there is a careful introduction to the real numbers with an emphasis on developing proof-writing skills. It continues with a logical development of the notions of sequences, open and closed sets (including compactness and the Cantor set), continuity, differentiation, integration, and series of numbers and functions. A theme in the book is to give more than one proof for interesting facts; this illustrates how different ideas interact and it makes connections among the facts that are being learned. Metric spaces are introduced early in the book, but there are instructions on how to avoid metric spaces for the instructor who wishes to do so. There are questions that check the readers' understanding of the material, with solutions provided at the end. Topics that could be optional or assigned for independent reading include the Cantor function, nowhere differentiable functions, the Gamma function, and the Weierstrass theorem on approximation by continuous functions.
The calculus of variations is one of the oldest subjects in mathematics, and it is very much alive and still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist - mathematicians, physicists, engineers, students or researchers - in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, several new exercises have been added. The book, containing a total of 119 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.
Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space.
The current book makes several useful topics from the theory of special functions, in particular the theory of spherical harmonics and Legendre polynomials in arbitrary dimensions, available to undergraduates studying physics or mathematics. With this audience in mind, nearly all details of the calculations and proofs are written out, and extensive background material is covered before exploring the main subject matter.
This book provides a modern introduction to harmonic analysis and synthesis on topological groups. It serves as a guide to the abstract theory of Fourier transformation. For the first time, it presents a detailed account of the theory of classical harmonic analysis together with the recent developments in spectral analysis and synthesis.
The geometry and analysis that is discussed in this book extends to classical results for general discrete or Lie groups, and the methods used are analytical but have little to do with what is described these days as real analysis. Most of the results described in this book have a dual formulation; they have a 'discrete version' related to a finitely generated discrete group, and a continuous version related to a Lie group. The authors chose to centre this book around Lie groups but could quite easily have pushed it in several other directions as it interacts with opetators, and probability theory, as well as with group theory. This book will serve as an excellent basis for graduate courses in Lie groups, Markov chains or potential theory.
Designed to work as a reference and as a supplement to an advanced course on dynamical systems, this book presents a self-contained and comprehensive account of modern smooth ergodic theory. Among other things, this provides a rigorous mathematical foundation for the phenomenon known as deterministic chaos - the appearance of 'chaotic' motions in pure deterministic dynamical systems. A sufficiently complete description of topological and ergodic properties of systems exhibiting deterministic chaos can be deduced from relatively weak requirements on their local behavior known as nonuniform hyperbolicity conditions. Nonuniform hyperbolicity theory is an important part of the general theory of dynamical systems. Its core is the study of dynamical systems with nonzero Lyapunov exponents both conservative and dissipative, in addition to cocycles and group actions. The results of this theory are widely used in geometry (e.g., geodesic flows and Teichmuller flows), in rigidity theory, in the study of some partial differential equations (e.g., the Schroedinger equation), in the theory of billiards, as well as in applications to physics, biology, engineering, and other fields.
This book gives a unified approach to the theory concerning a new matrix version of classical harmonic analysis. Most results in the book have their analogues as classical or newer results in harmonic analysis. It can be used as a source for further research in many areas related to infinite matrices. In particular, it could be a perfect starting point for students looking for new directions to write their PhD thesis as well as for experienced researchers in analysis looking for new problems with great potential to be very useful both in pure and applied mathematics where classical analysis has been used, for example, in signal processing and image analysis.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincare, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
The Second Course in Statistics is an increasingly important offering since more students are arriving at college having taken AP Statistics in high school. Mendenhall/Sincich's A Second Course in Statistics is the perfect book for courses that build on the knowledge students gain in AP Statistics, or the freshman Introductory Statistics course. A Second Course in Statistics: Regression Analysis, Seventh Edition, focuses on building linear statistical models and developing skills for implementing regression analysis in real situations. This text offers applications for engineering, sociology, psychology, science, and business. The authors use real data and scenarios extracted from news articles, journals, and actual consulting problems to show how to apply the concepts. In addition, seven case studies, now located throughout the text after applicable chapters, invite students to focus on specific problems, and are suitable for class discussion.
This book, devoted to an invariant multidimensional process of recovering a function from its derivative, considers additive functions defined on the family of all bounded BV sets that are continuous with respect to a suitable topology. The main applications are related to the Gauss-Green and Stokes theorems. The book contains complete and detailed proofs of all new results, and of many known results for which the references are not easily available. It will provide valuable information to research mathematicians and advanced graduate students interested in geometric integration and related areas.
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of the new results are presented in great detail.
The word holor is a term coined by the authors to describe a mathematical entity that is made up of one or more independent quantities, and includes complex numbers, scalars, vectors, matrices, tensors, quaternions, and other hypernumbers. Holors, thus defined, have been known for centuries but each has been developed more or less independently, accompanied by separate nomenclature and theory. This book demonstrates how these complicated subjects can be made simple by using a single notation that applies to all holors, both tensor and nontensor. The authors consider all possible types of holors and develop holor algebra and holor calculus in the most general sense. Thus the reader will learn to develop a new holor that fits the application, rather than forcing an application onto a holor representation that is known but that does not perfectly describe the application. The discussion includes nontensors having no transformation and holors that transform in more complicated ways than allowed with ordinary tensors. This opens up the possibility to devise a holor for a new physical application, without being limited to a few conventional types of holor. This book should establish a method by which students and teachers can learn vector and tensor analysis via a uniform treatment. Graduate students and professionals in engineering, physics. applied mathematics, chemistry, biology, psychology, and other analytical sciences should find this to be a useful and innovative work. |
![]() ![]() You may like...
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,572
Discovery Miles 25 720
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,971
Discovery Miles 29 710
|