![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Krichever and Novikov introduced certain classes of infinite dimensional Lie algebras to extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them to a more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are still manageable. This book gives an introduction for the newcomer to this exciting field of ongoing research in mathematics and will be a valuable source of reference for the experienced researcher. Beside the basic constructions and results also applications are presented.
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
"The Art of Proof" is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, the student's previous intuitive knowledge is placed on solid intellectual ground. The topics covered include: integers, induction, algorithms, real numbers, rational numbers, modular arithmetic, limits, and uncountable sets. Methods, such as axiom, theorem and proof, are taught while discussing the mathematics rather than in abstract isolation. The book ends with short essays on further topics suitable for seminar-style presentation by small teams of students, either in class or in a mathematics club setting. These include: continuity, cryptography, groups, complex numbers, ordinal number, and generating functions.
Including previously unpublished, original research material, this comprehensive book analyses topics of fundamental importance in theoretical fluid mechanics. The five papers appearing in this volume are centred around the mathematical theory of the Navier-Stokes equations (incompressible and compressible) and certain selected non-Newtonian modifications.
This established textbook is noted for its coverage of optimization methods that are of practical importance. It provides a thorough treatment of standard methods such as linear and quadratic programming, Newton-like methods and the conjugate gradient method. The theoretical aspects of the subject include an extended treatment of optimality conditions and the significance of Lagrange multipliers. The relevance of convexity theory to optimization is also not neglected. A significant proportion of the book is devoted to the solution of nonlinear problems, with an authoritative treatment of current methodology. Thus state of the art techniques such as the BFGS method, trust region methods and the SQP method are described and analysed. Other features are an extensive treatment of nonsmooth optimization and the L1 penalty function. Contents Part 1 Unconstrained Optimization Part 2 Constrained Optimization
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief Jurgen Appell, Wurzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Torun, Poland Vicentiu D. Radulescu, Krakow, Poland Simeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)
The Euclidean algorithm is one of the oldest in mathematics, while the study of continued fractions as tools of approximation goes back at least to Euler and Legendre. While our understanding of continued fractions and related methods for simultaneous diophantine approximation has burgeoned over the course of the past decade and more, many of the results have not been brought together in book form. Continued fractions have been studied from the perspective of number theory, complex analysis, ergodic theory, dynamic processes, analysis of algorithms, and even theoretical physics, which has further complicated the situation. This book places special emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Extensive, attractive computer-generated graphics are presented, and the underlying algorithms are discussed and made available.
Stochastic Partial Differential Equations and Applications gives an overview of current state-of-the-art stochastic PDEs in several fields, such as filtering theory, stochastic quantization, quantum probability, and mathematical finance. Featuring contributions from leading expert participants at an international conference on the subject, this book presents valuable information for PhD students in probability and PDEs as well as for researchers in pure and applied mathematics. Coverage includes Navier-Stokes equations, Ornstein-Uhlenbeck semigroups, quantum stochastic differential equations, applications of SPDE, 3D stochastic Navier-Stokes equations, and nonlinear filtering.
This monograph is divided into five parts and opens with elements of the theory of singular integral equation solutions in the class of absolutely integrable and non-integrable functions. The second part deals with elements of potential theory for the Helmholtz equation, especially with the reduction of Dirichlet and Neumann problems for Laplace and Helmholtz equations to singular integral equations. Part three contains methods of calculation for different one-dimensional and two-dimensional singular integrals. In this part, quadrature formulas of discrete vortex pair type in the plane case and closed vortex frame type in the spatial case for singular integrals are described for the first time. These quadrature formulas are applied to numerical solutions of singular integral equations of the 1st and 2nd kind with constant and variable coefficients, in part four of the book. Finally, discrete mathematical models of some problems in aerodynamics, electrodynamics and elasticity theory are given.
The first book to examine weakly stationary random fields and their connections with invariant subspaces (an area associated with functional analysis). It reviews current literature, presents central issues and most important results within the area. For advanced Ph.D. students, researchers, especially those conducting research on Gaussian theory.
Fourier analysis is a mathematical technique for decomposing a signal into identifiable components. It is used in the study of all types of waves. This book explains the basic mathematical theory and some of the principal applications of Fourier analysis, in areas ranging from sound and vibration to optics and CAT scanning. The author provides in-depth coverage of the techniques and includes exercises that range from straightforward applications of formulas to more complex collections of problems. The text will be a valuable guide for courses in electrical engineering, applied mathematics, and signal processing.
The study of the symmetric groups forms one of the basic building blocks of modern group theory. This book is the first completely detailed and self-contained presentation of the wealth of information now known on the projective representations of the symmetric and alternating groups. Prerequisites are a basic familiarity with the elementary theory of linear representations and a modest background in modern algebra. The authors have taken pains to ensure that all the relevant algebraic and combinatoric tools are clearly explained in such a way as to make the book suitable for graduate students and research workers. After the pioneering work of Issai Schur, little progress was made for half a century on projective representations, despite considerable activity on the related topic of linear representations. However, in the last twenty years important new advances have spurred further research. This book develops both the early theory of Schur and then describes the key advances that the subject has seen since then. In particular the theory of Q-functions and skew Q-functions is extensively covered which is central to the development of the subject.
A comprehensive review of the Kurzweil-Henstock integration process on the real line and in higher dimensions. It seeks to provide a unified theory of integration that highlights Riemann-Stieljes and Lebesgue integrals as well as integrals of elementary calculus. The author presents practical applications of the definitions and theorems in each section as well as appended sets of exercises.
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable investigative scientific tools. Most of the techniques used for these analyses are well documented. However, a particularly useful method based on adjoint operators and applicable to a much wider variety of problems than methods traditionally used in control theory has lacked a full, systematic treatment.
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.
This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lectures and coordinated courses on specific research topics within this fast growing subject. Harmonic Analysis and Integral Geometry presents important recent advances in the fields of Radon transforms, integral geometry, and harmonic analysis on Lie groups and symmetric spaces. Several articles are devoted to the new theory of Radon transforms on trees. With its related presentations addressing recent developments in various aspects of these intriguing areas of study, Harmonic Analysis and Integral Geometry becomes an important addition not only to the Research Notes in Mathematics series, but to the general mathematics literature.
Multigrid methods are among the most efficient iterative methods for the solution of linear systems which arise in many large scale scientific calculations. Every researcher working with the numerical solution of partial differential equations should at least be familiar with this powerful technique. This invaluable book presents results concerning the rates of convergence of multigrid iterations.
The volume is based on the Sobolev-Schwartz concept of Generalized Functions. It presents general theory including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner, Poisson integral transforms and operational calculus. Traditional material is supplemented by the theory of Fourier series, abelian theorems, boundary values of helomorphic functions for one and several variables. There is detailed study of convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions and multiplication of generalized functions and some trends in these problems. Methods of the theory of generalized functions are applied to some problems in mathematical physics, for example: fundamental solutions of partial differential equations and Cauchy problems. This volume also includes numerous problems, exercises, examples and figures.
This book provides a comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well known and have been widely used in the last century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this book, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The book is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory.
The series is devoted to the publication of high-level monographs which cover the whole spectrum of current nonlinear analysis and applications in various fields, such as optimization, control theory, systems theory, mechanics, engineering, and other sciences. One of its main objectives is to make available to the professional community expositions of results and foundations of methods that play an important role in both the theory and applications of nonlinear analysis. Contributions which are on the borderline of nonlinear analysis and related fields and which stimulate further research at the crossroads of these areas are particularly welcome. Editor-in-Chief Jurgen Appell, Wurzburg, Germany Honorary and Advisory Editors Catherine Bandle, Basel, Switzerland Alain Bensoussan, Richardson, Texas, USA Avner Friedman, Columbus, Ohio, USA Umberto Mosco, Worcester, Massachusetts, USA Louis Nirenberg, New York, USA Alfonso Vignoli, Rome, Italy Editorial Board Manuel del Pino, Bath, UK, and Santiago, Chile Mikio Kato, Nagano, Japan Wojciech Kryszewski, Torun, Poland Vicentiu D. Radulescu, Krakow, Poland Simeon Reich, Haifa, Israel Please submit book proposals to Jurgen Appell. Titles in planning include Lucio Damascelli and Filomena Pacella, Morse Index of Solutions of Nonlinear Elliptic Equations (2019) Tomasz W. Dlotko and Yejuan Wang, Critical Parabolic-Type Problems (2019) Rafael Ortega, Periodic Differential Equations in the Plane: A Topological Perspective (2019) Ireneo Peral Alonso and Fernando Soria, Elliptic and Parabolic Equations Involving the Hardy-Leray Potential (2020) Cyril Tintarev, Profile Decompositions and Cocompactness: Functional-Analytic Theory of Concentration Compactness (2020) Takashi Suzuki, Semilinear Elliptic Equations: Classical and Modern Theories (2021)
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022) |
You may like...
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,900
Discovery Miles 39 000
Basic Multivariable Calculus
Jerrold E. Marsden, Anthony Tromba, …
Hardcover
R2,059
Discovery Miles 20 590
Student Solutions Manual for Calculus…
Robert Adams, Christopher Essex
Paperback
R717
Discovery Miles 7 170
Handbook of Differential Equations…
Michel Chipot, Pavol Quittner
Hardcover
R4,230
Discovery Miles 42 300
|