![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics. Specifically, it discusses global aspects of elliptic PDEs, Berezin-Toeplitz quantization, the stability of solitary waves, and sub-Riemannian geometry. The contributions are based on lectures given by distinguished experts at a summer school in Goettingen. The authors explain fundamental concepts and ideas and present them clearly. Starting from basic notions, these course notes take the reader to the point of current research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. All contributions are of interest to researchers in the respective fields, but they are also accessible to graduate students.
This book contains papers presented at the Chicago Conference on Harmonic Analysis in 1981. The papers are compiled under topics, namely trigonometric series, singular integrals and pseudodifferential operators, hardy spaces, differentiation theory, and partial differential equations.
This book is an introduction to the subject and is devoted to standard material on linear functional analysis, and presents some ergodic theorems for classes of operators containing the quasi-compact operators. It discusses various classes of operators connected with the numerical range.
The Second Course in Statistics is an increasingly important offering since more students are arriving at college having taken AP Statistics in high school. Mendenhall/Sincich's A Second Course in Statistics is the perfect book for courses that build on the knowledge students gain in AP Statistics, or the freshman Introductory Statistics course. A Second Course in Statistics: Regression Analysis, Seventh Edition, focuses on building linear statistical models and developing skills for implementing regression analysis in real situations. This text offers applications for engineering, sociology, psychology, science, and business. The authors use real data and scenarios extracted from news articles, journals, and actual consulting problems to show how to apply the concepts. In addition, seven case studies, now located throughout the text after applicable chapters, invite students to focus on specific problems, and are suitable for class discussion.
This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel-Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone-spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. The book should be useful for mathematicians, numerical analysts, computer scientists and engineers.
Introduces Novel Applications for Solving Neutron Transport Equations While deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavior of nuclear reactors. It applies fractional calculus to incorporate the mathematical methods used to analyze the diffusion theory model of neutron transport and explains the role of neutron transport in reactor theory. The author discusses fractional calculus and the numerical solution for fractional neutron point kinetic equation (FNPKE), introduces the technique for efficient and accurate numerical computation for FNPKE with different values of reactivity, and analyzes the fractional neutron point kinetic (FNPK) model for the dynamic behavior of neutron motion. The book begins with an overview of nuclear reactors, explains how nuclear energy is extracted from reactors, and explores the behavior of neutron density using reactivity functions. It also demonstrates the applicability of the Haar wavelet method and introduces the neutron diffusion concept to aid readers in understanding the complex behavior of average neutron motion. This text: Applies the effective analytical and numerical methods to obtain the solution for the NDE Determines the numerical solution for one-group delayed neutron FNPKE by the explicit finite difference method Provides the numerical solution for classical as well as fractional neutron point kinetic equations Proposes the Haar wavelet operational method (HWOM) to obtain the numerical approximate solution of the neutron point kinetic equation, and more Fractional Calculus with Applications for Nuclear Reactor Dynamics thoroughly and systematically presents the concepts of fractional calculus and emphasizes the relevance of its application to the nuclear reactor.
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear elliptic equations as well as their applications to various processes arising in the applied sciences. The analysis developed in the book is based on the notion of a generalized or weak solution. This approach leads not only to the fundamental results of existence and multiplicity of weak solutions but also to several qualitative properties, including spectral analysis, bifurcation, and asymptotic analysis. The book examines the equations from different points of view while using the calculus of variations as the unifying theme. Readers will see how all of these diverse topics are connected to other important parts of mathematics, including topology, differential geometry, mathematical physics, and potential theory.
This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.
This text on measure theory with applications to partial differential equations covers general measure theory, Lebesgue spaces of real-valued and vector-valued functions, different notions of measurability for the latter, weak convergence of functions and measures, Radon and Young measures, capacity. A comprehensive discussion of applications to quasilinear parabolic and hyperbolic problems is provided.
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics. Convex Analysis introduces analytic tools for studying convexity and provides analytical applications of the concept. The book includes a general background on classical geometric theory which allows readers to obtain a glimpse of how modern mathematics is developed and how geometric ideas may be studied analytically. Featuring a user-friendly approach, the book contains copious examples and plenty of figures to illustrate the ideas presented. It also includes an appendix with the technical tools needed to understand certain arguments in the book, a tale of notation, and a thorough glossary to help readers with unfamiliar terms. This book is a definitive introductory text to the concept of convexity in the context of mathematical analysis and a suitable resource for students and faculty alike.
For a three-semester or four-quarter calculus course covering single variable and multivariable calculus for mathematics, engineering, and science majors. This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students' geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows. The groundbreaking eBook contains over 650 Interactive Figures that can be manipulated to shed light on key concepts. This text offers a superior teaching and learning experience.Here's how: *A robust MyMathLab(r) course contains more than 7,000 assignable exercises, an eBook with 650 Interactive Figures, and built-in tutorials so students can get help when they need it. *Reflects how students use a textbook-they start with the exercises and flip back for help if they need it. *Organization and presentation of content facilitates learning of key concepts, skills, and applications.
Since the appearance of Banach algebra theory, the interaction between the theories ofBanach algebras with involution and that of bounded linear operators on a Hilbert space hasbeen extensively developed. The connections of Banach algebras with the theory ofbounded linear operators on a Hilbert space have also evolved, and Calkin Algebras andAlgebras of Operators on Banach Spaces provides an introduction to this set of ideas.The book begins with a treatment of the classical Riesz-Schauder theory which takesadvantage of the most recent developments-some of this material appears here for the firsttime. Although the reader should be familiar with the basics of functional analysis, anintroductory chapter on Banach algebras has been included. Other topics dealt with includeFredholm operators, semi-Fredholm operators, Riesz operators. and Calkin algebras.This volume will be of direct interest to both graduate students and research mathematicians.
This book provides a one-semester undergraduate introduction to counterexamples in calculus and analysis. It helps engineering, natural sciences, and mathematics students tackle commonly made erroneous conjectures. The book encourages students to think critically and analytically, and helps to reveal common errors in many examples. In this book, the authors present an overview of important concepts and results in calculus and real analysis by considering false statements, which may appear to be true at first glance. The book covers topics concerning the functions of real variables, starting with elementary properties, moving to limits and continuity, and then to differentiation and integration. The first part of the book describes single-variable functions, while the second part covers the functions of two variables. The many examples presented throughout the book typically start at a very basic level and become more complex during the development of exposition. At the end of each chapter, supplementary exercises of different levels of complexity are provided, the most difficult of them with a hint to the solution. This book is intended for students who are interested in developing a deeper understanding of the topics of calculus. The gathered counterexamples may also be used by calculus instructors in their classes.
Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions involving differentiable or directionally differentiable functions. This essential reference supplies both an introduction to the field and a guideline to the literature, progressing from basic concepts to the latest developments. Packed with detailed proofs and bibliographies for further reading, the text: Examines Mann-type iterations for nonlinear mappings on some classes of a metric space Outlines recent research in fixed point theory in modular function spaces Discusses key results on the existence of continuous approximations and selections for set-valued maps with an emphasis on the nonconvex case Contains definitions, properties, and characterizations of convex, quasiconvex, and pseudoconvex functions, and of their strict counterparts Discusses variational inequalities and variational-like inequalities and their applications Gives an introduction to multi-objective optimization and optimality conditions Explores multi-objective combinatorial optimization (MOCO) problems, or integer programs with multiple objectives Fixed Point Theory, Variational Analysis, and Optimization is a beneficial resource for the research and study of nonlinear analysis, optimization theory, variational inequalities, and mathematical economics. It provides fundamental knowledge of directional derivatives and monotonicity required in understanding and solving variational inequality problems.
This unique book explores the connections between the geometry of mappings and many important areas of modern mathematics such as harmonic and non-linear analysis, the theory of partial differential equations, conformal geometry and topology. The book contains much new material not published elsewhere and provides students and researchers in many areas with a comprehensive and up to date account of the subject as a whole.
This book presents a theory of necessary conditions for an extremum, including formal conditions for an extremum and computational methods. It states the general results of the theory and shows how these results can be particularized to specific problems.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
A step-by-step guide to computing and graphics in regression analysis
this monographis based on two courses in computational mathematics and operative research, which were given by the author in recent years to doctorate and PhD students. The text focuses on an aspect of the theory of inverse problems, which is usually referred to as identification of parameters (numbers, vectors, matrices, functions) appearing in differential- or integrodifferential- equations. The parameters of such equations are either quite unknown or partially unknown, however knowledge about these is usually essential as they describe the intrinsic properties of the material or substance under consideration.
Professor Zygmund's Trigonometric Series, first published in Warsaw in 1935, established itself as a classic. It presented a concise account of the main results then known, but on a scale that limited the amount of detailed discussion possible. A greatly enlarged second edition (Cambridge, 1959) published in two volumes took full account of developments in trigonometric series, Fourier series, and related branches of pure mathematics since the publication of the original edition. These two volumes, bound together with a foreword from Robert Fefferman, outline the significance of this text. Volume I, containing the completely re-written material of the original work, deals with trigonometric series and Fourier series. Volume II provides much material previously unpublished in book form.
Fourier analysis aims to decompose functions into a superposition of simple trigonometric functions, whose special features can be exploited to isolate specific components into manageable clusters before reassembling the pieces. This two-volume text presents a largely self-contained treatment, comprising not just the major theoretical aspects (Part I) but also exploring links to other areas of mathematics and applications to science and technology (Part II). Following the historical and conceptual genesis, this book (Part I) provides overviews of basic measure theory and functional analysis, with added insight into complex analysis and the theory of distributions. The material is intended for both beginning and advanced graduate students with a thorough knowledge of advanced calculus and linear algebra. Historical notes are provided and topics are illustrated at every stage by examples and exercises, with separate hints and solutions, thus making the exposition useful both as a course textbook and for individual study.
Originally published in 1936, this detailed textbook is a companion to the 1931 publication An Elementary Treatise on Actuarial Mathematics and is intended to provide further examples for learning, practice and revision; 'the inclusion of additional examples in the book as it stood was impracticable, and it appeared that the difficulty could only be overcome by the publication of a supplement to the book'. Contained is a vast selection of examples on finite differences, calculus and probability, in the hope 'that the supplement will prove of value to students, especially to those who have completed the course for the examination'. Notably, most questions purposely hint at solution and refrain from providing a full explanation - 'in only a few instances has the complete solution of the question been given'. This engaging book will be of great value to anyone with an interest in mathematics, science and the history of education.
The Student Solutions Manual provides completely worked-out solutions to all odd-numbered problems in the text.
Fractals and wavelets are emerging areas of mathematics with many common factors which can be used to develop new technologies. This volume contains the selected contributions from the lectures and plenary and invited talks given at the International Workshop and Conference on Fractals and Wavelets held at Rajagiri School of Engineering and Technology, India from November 9-12, 2013. Written by experts, the contributions hope to inspire and motivate researchers working in this area. They provide more insight into the areas of fractals, self similarity, iterated function systems, wavelets and the applications of both fractals and wavelets. This volume will be useful for the beginners as well as experts in the fields of fractals and wavelets.
|
You may like...
Designing Interfaces - Patterns for…
Jenifer Tidwell, Charles Brewer, …
Paperback
|