![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Stochastic Partial Differential Equations and Applications gives an overview of current state-of-the-art stochastic PDEs in several fields, such as filtering theory, stochastic quantization, quantum probability, and mathematical finance. Featuring contributions from leading expert participants at an international conference on the subject, this book presents valuable information for PhD students in probability and PDEs as well as for researchers in pure and applied mathematics. Coverage includes Navier-Stokes equations, Ornstein-Uhlenbeck semigroups, quantum stochastic differential equations, applications of SPDE, 3D stochastic Navier-Stokes equations, and nonlinear filtering.
Multigrid methods are among the most efficient iterative methods for the solution of linear systems which arise in many large scale scientific calculations. Every researcher working with the numerical solution of partial differential equations should at least be familiar with this powerful technique. This invaluable book presents results concerning the rates of convergence of multigrid iterations.
Fourier analysis is a mathematical technique for decomposing a signal into identifiable components. It is used in the study of all types of waves. This book explains the basic mathematical theory and some of the principal applications of Fourier analysis, in areas ranging from sound and vibration to optics and CAT scanning. The author provides in-depth coverage of the techniques and includes exercises that range from straightforward applications of formulas to more complex collections of problems. The text will be a valuable guide for courses in electrical engineering, applied mathematics, and signal processing.
The study of the symmetric groups forms one of the basic building blocks of modern group theory. This book is the first completely detailed and self-contained presentation of the wealth of information now known on the projective representations of the symmetric and alternating groups. Prerequisites are a basic familiarity with the elementary theory of linear representations and a modest background in modern algebra. The authors have taken pains to ensure that all the relevant algebraic and combinatoric tools are clearly explained in such a way as to make the book suitable for graduate students and research workers. After the pioneering work of Issai Schur, little progress was made for half a century on projective representations, despite considerable activity on the related topic of linear representations. However, in the last twenty years important new advances have spurred further research. This book develops both the early theory of Schur and then describes the key advances that the subject has seen since then. In particular the theory of Q-functions and skew Q-functions is extensively covered which is central to the development of the subject.
"Presents new approaches to qualitative analysis of continuous, discreteptime, and impulsive nonlinear systems via Liapunov matrix-valued functions that introduce more effective tests for solving problems of estimating the domains of asymptotic stability."
As computer-assisted modeling and analysis of physical processes have continued to grow and diversify, sensitivity and uncertainty analyses have become indispensable investigative scientific tools. Most of the techniques used for these analyses are well documented. However, a particularly useful method based on adjoint operators and applicable to a much wider variety of problems than methods traditionally used in control theory has lacked a full, systematic treatment.
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
This book provides a comprehensive discussion on the existence and regularity of minima of regular integrals in the calculus of variations and of solutions to elliptic partial differential equations and systems of the second order. While direct methods for the existence of solutions are well known and have been widely used in the last century, the regularity of the minima was always obtained by means of the Euler equation as a part of the general theory of partial differential equations. In this book, using the notion of the quasi-minimum introduced by Giaquinta and the author, the direct methods are extended to the regularity of the minima of functionals in the calculus of variations, and of solutions to partial differential equations. This unified treatment offers a substantial economy in the assumptions, and permits a deeper understanding of the nature of the regularity and singularities of the solutions. The book is essentially self-contained, and requires only a general knowledge of the elements of Lebesgue integration theory.
Vectors and Tensors in Engineering and Physics develops the calculus of tensor fields and uses this mathematics to model the physical world. This new edition includes expanded derivations and solutions, and new applications. The book provides equations for predicting: the rotations of gyroscopes and other axisymmetric solids, derived from Euler's equations for the motion of rigid bodies; the temperature decays in quenched forgings, derived from the heat equation; the deformed shapes of twisted rods and bent beams, derived from the Navier equations of elasticity; the flow fields in cylindrical pipes, derived from the Navier-Stokes equations of fluid mechanics; the trajectories of celestial objects, derived from both Newton's and Einstein's theories of gravitation; the electromagnetic fields of stationary and moving charged particles, derived from Maxwell's equations; the stress in the skin when it is stretched, derived from the mechanics of curved membranes; the effects of motion and gravitation upon the times of clocks, derived from the special and general theories of relativity. The book also features over 100 illustrations, complete solutions to over 400 examples and problems, Cartesian components, general components, and components-free notations, lists of notations used by other authors, boxes to highlight key equations, historical notes, and an extensive bibliography.
A comprehensive review of the Kurzweil-Henstock integration process on the real line and in higher dimensions. It seeks to provide a unified theory of integration that highlights Riemann-Stieljes and Lebesgue integrals as well as integrals of elementary calculus. The author presents practical applications of the definitions and theorems in each section as well as appended sets of exercises.
At the heart of modern cryptographic algorithms lies computational number theory. Whether you're encrypting or decrypting ciphers, a solid background in number theory is essential for success. Written by a number theorist and practicing cryptographer, Cryptanalysis of Number Theoretic Ciphers takes you from basic number theory to the inner workings of ciphers and protocols.
The volume is based on the Sobolev-Schwartz concept of Generalized Functions. It presents general theory including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner, Poisson integral transforms and operational calculus. Traditional material is supplemented by the theory of Fourier series, abelian theorems, boundary values of helomorphic functions for one and several variables. There is detailed study of convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions and multiplication of generalized functions and some trends in these problems. Methods of the theory of generalized functions are applied to some problems in mathematical physics, for example: fundamental solutions of partial differential equations and Cauchy problems. This volume also includes numerous problems, exercises, examples and figures.
Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published before but have influenced the field for more than two decades. Other chapters contain fresh, original work and bring readers to the current frontier of research. The title reflects the fruitful interplay between diverse mathematical fields bound together by the common theme of complex dynamics, including hyperbolic geometry, number theory, group theory, combinatorics, general dynamics, and many more. At the same time, the title alludes to the spirit of mathematical friendship among the researchers in this area. This book is a tribute to John Hubbard, one of the most inspiring pioneers in the field of complex dynamics.
The book analyzes the existence of solitons, namely of finite energy solutions of field equations which exhibit stability properties. The book is divided in two parts. In the first part, the authors give an abstract definition of solitary wave and soliton and we develop an abstract existence theory for hylomorphic solitons, namely for those solitons which minimize the energy for a given charge. In the second part, the authors apply this theory to prove the existence of hylomorphic solitons for some classes of field equations (nonlinear Klein-Gordon-Maxwell equations, nonlinear Schroedinger-Maxwell equations, nonlinear beam equation,..). The abstract theory is sufficiently flexible to be applied to other situations, like the existence of vortices. The books is addressed to Mathematicians and Physicists.
The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.
Although the problem of stability and bifurcation is well
understood in Mechanics, very few treatises have been devoted to
stability and bifurcation analysis in dissipative media, in
particular with regard to present and fundamental problems in Solid
Mechanics such as plasticity, fracture and contact mechanics.
Stability and Nonlinear Solid Mechanics addresses this lack of
material, and proposes to the reader not only a unified
presentation of nonlinear problems in Solid Mechanics, but also a
complete and unitary analysis on stability and bifurcation problems
arising within this framework. Main themes include:
A one-stop reference to the The last two decades have seen important progress in the development of methods for the analysis of microwave and millimeter-wave passive structures, which contributed greatly to microwave integrated circuit design while also stimulating the development of new planar transmission lines. This timely and authoritative work introduces microwave engineers to the most commonly used techniques for analyzing microwave planar transmission line structures. Designed to be easily accessible to readers with only a fundamental background in electromagnetic theory, the book provides clear explanations of the theory and applications of Green’s function, the conformal-mapping method, spectral domain methods, variational methods, and the mode-matching methods. Coverage for each method is self-contained and supplemented with problems and solutions as well as useful figures. In addition to providing detailed formulations of the methods under discussion, this highly practical book also demonstrates how to apply the principles of electromagnetic theory to the analysis of microwave boundary value problems, customize methods for specific needs, and develop new techniques. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures is an excellent working resource for anyone involved in the design and engineering of RF, microwave, and millimeter-wave integrated circuits.
A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and other disciplines. It features 200 new problems, 400 additional references, and a new chapter on the qualitative properties of solutions of neutral difference equations.
For two-semester courses in Applied Calculus. Anticipating and meeting student needs Calculus and Its Applications remains a best-selling text because of its intuitive approach that anticipates student needs, and a writing style that pairs clear explanations with carefully crafted figures to help students visualize concepts. Key enhancements in the 2nd Edition include the earlier introduction of logarithmic and exponential functions to help students master these important functions and their applications. The text's accompanying MyLab (TM) Math course also has been revised substantially, as new co-author Gene Kramer (University of Cincinnati, Blue Ash) revisited every homework question and learning aid to improve content clarity and accuracy. These and all other aspects of the new edition are designed to motivate and help students more readily understand and apply principles of calculus. The title of this text was formerly Calculus and Its Applications, Expanded Version. Also available with MyLab Math MyLab (TM) Math is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, MyLab Math personalizes the learning experience and improves results for each student. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 013530802X / 9780135308028 Calculus and Its Applications plus MyLab Math with Pearson eText - Title-Specific Access Card Package Package consists of: 0135091683 / 9780135091685 Calculus and Its Applications 0135218233 / 9780135218235 MyLab Math with Pearson eText - Standalone Access Card - for Calculus and Its Applications
The book contains 13 articles, some of which are survey articles and others research papers. Written by eminent mathematicians, these articles were presented at the International Workshop on Complex Analysis and Its Applications held at Walchand College of Engineering, Sangli. All the contributing authors are actively engaged in research fields related to the topic of the book. The workshop offered a comprehensive exposition of the recent developments in geometric functions theory, planar harmonic mappings, entire and meromorphic functions and their applications, both theoretical and computational. The recent developments in complex analysis and its applications play a crucial role in research in many disciplines.
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics.
On the basis of Hua Loo-Kengs results on harmonic analysis on classical groups, the author Gong Sheng develops his subject further, drawing togetherresults of his own research as well as works from other Chinese mathematicians. The book is divided into three parts studying harmonic analysis of various groups. Starting with the discussion on unitary groups in part one, the author moves on to rotation groups and unitary symplectic groups in parts 2 and 3. Thus the book provides a survey of harmonic analysis on characteristic manifold of classical domain of first type for real fields, complex fields and quaternion fields. This study will appeal to a wide range of readers from senior mathematics students up to graduate students and to teachers in this field of mathematics.
The main purpose of this book is to provide a detailed and comprehensive survey of the theory of singular integrals and Fourier multipliers on Lipschitz curves and surfaces, an area that has been developed since the 1980s. The subject of singular integrals and the related Fourier multipliers on Lipschitz curves and surfaces has an extensive background in harmonic analysis and partial differential equations. The book elaborates on the basic framework, the Fourier methodology, and the main results in various contexts, especially addressing the following topics: singular integral operators with holomorphic kernels, fractional integral and differential operators with holomorphic kernels, holomorphic and monogenic Fourier multipliers, and Cauchy-Dunford functional calculi of the Dirac operators on Lipschitz curves and surfaces, and the high-dimensional Fueter mapping theorem with applications. The book offers a valuable resource for all graduate students and researchers interested in singular integrals and Fourier multipliers.
This book provides an introduction to those parts of analysis that are most useful in applications for graduate students. The material is selected for use in applied problems, and is presented clearly and simply but without sacrificing mathematical rigor.The text is accessible to students from a wide variety of backgrounds, including undergraduate students entering applied mathematics from non-mathematical fields and graduate students in the sciences and engineering who want to learn analysis. A basic background in calculus, linear algebra and ordinary differential equations, as well as some familiarity with functions and sets, should be sufficient. |
You may like...
Natural Locomotion in Fluids and on…
Stephen Childress, Anette Hosoi, …
Hardcover
R2,691
Discovery Miles 26 910
Clustering Methods for Big Data…
Olfa Nasraoui, Chiheb-Eddine Ben N'Cir
Hardcover
R3,985
Discovery Miles 39 850
|