![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book offers an introduction to wavelet theory and provides the essence of wavelet analysis - including Fourier analysis and spectral analysis; the maximum overlap discrete wavelet transform; wavelet variance, covariance, and correlation - in a unified and friendly manner. It aims to bridge the gap between theory and practice by presenting substantial applications of wavelets in economics and finance.This book is the first to provide a comprehensive application of wavelet analysis to financial markets, covering new frontier issues in empirical finance and economics. The first chapter of this unique text starts with a description of the key features and applications of wavelets. After an overview of wavelet analysis, successive chapters rigorously examine the various economic and financial topics and issues that stimulate academic and professional research, including equity, interest swaps, hedges and futures, foreign exchanges, financial asset pricing, and mutual fund markets.This detail-oriented text is descriptive and designed purely for academic researchers and financial practitioners. It assumes no prior knowledge of econometrics and covers important topics such as portfolio asset allocation, asset pricing, hedging strategies, new risk measures, and mutual fund performance. Its accessible presentation is also suitable for post-graduates in a variety of disciplines - applied economics, financial engineering, international finance, financial econometrics, and fund management. To facilitate the subject of wavelets, sophisticated proofs and mathematics are avoided as much as possible when applying the wavelet multiscaling method. To enhance the reader's understanding in practical applications of the wavelet multiscaling method, this book provides sample programming instruction backed by Matlab wavelet code.
This book is an overview of scattering theory. The author shows how this theory provides a parametrization of the continuous spectrum of an elliptic operator on a complete manifold with uniform structure at infinity. In the first two lectures the author describes the simple and fundamental case of the Laplacian on Euclidean space to introduce the theory's basic framework. In the next three lectures, he outlines various results on Euclidean scattering, and the methods used to prove them. In the last three lectures he extends these ideas to non-Euclidean settings.
This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
This book is a detailed study of Gottfried Wilhelm Leibniz's creation of calculus from 1673 to the 1680s. We examine and analyze the mathematics in several of his early manuscripts as well as various articles published in the Acta Eruditorum. It studies some of the other lesser known "calculi" Leibniz created such as the Analysis Situs, delves into aspects of his logic, and gives an overview of his efforts to construct a Universal Characteristic, a goal that has its distant origin in the Ars Magna of the 13th century Catalan philosopher Raymond Llull, whose work enjoyed a renewed popularity in the century and a half prior to Leibniz.This book also touches upon a new look at the priority controversy with Newton and a Kuhnian interpretation of the nature of mathematical change. This book may be the only integrated treatment based on recent research and should be a thought-provoking contribution to the history of mathematics for scholars and students, interested in either Leibniz's mathematical achievement or general issues in the field.
Using the proof of the non-trisectability of an arbitrary angle as a final goal, the author develops in an easy conversational style the basics of rings, fields, and vector spaces. Originally developed as a text for an introduction to algebra course for future high-school teachers at California State University, Northridge, the focus of this book is on exposition. It would serve extremely well as a focused, one-semester introduction to abstract algebra.
Barron's comprehensive AP Calculus covers both Calculus AB and Calculus BC and is updated to align with the latest AP Calculus AB and BC exams. This new edition features: Four practice exams in Calculus AB and four more in Calculus BC, modified to reflect the new exam format All test questions answered with solutions explained A detailed subject review covering topics for both exams Advice to students on efficient use of their graphing calculators BONUS ONLINE PRACTICE TEST: Students who purchase this book will also get FREE access to one additional full-length online AP Calculus test with all questions answered and explained.
Test fairness is a moral imperative for both the makers and the
users of tests. This book focuses on methods for detecting test
items that function differently for different groups of examinees
and on using this information to improve tests. Of interest to all
testing and measurement specialists, it examines modern techniques
used routinely to insure test fairness. Three of these relevant to
the book's contents are:
This accessible introduction to harmonic map theory and its analytical aspects, covers recent developments in the regularity theory of weakly harmonic maps. The book begins by introducing these concepts, stressing the interplay between geometry, the role of symmetries and weak solutions. It then presents a guided tour into the theory of completely integrable systems for harmonic maps, followed by two chapters devoted to recent results on the regularity of weak solutions. A presentation of "exotic" functional spaces from the theory of harmonic analysis is given and these tools are then used for proving regularity results. The importance of conservation laws is stressed and the concept of a "Coulomb moving frame" is explained in detail. The book ends with further applications and illustrations of Coulomb moving frames to the theory of surfaces.
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics. Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem, the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics. Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem, the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.
Rapid developments in multivariable spectral theory have led to important and fascinating results which also have applications in other mathematical disciplines. In this book, classical results from the cohomology theory of Banach algebras, multidimensional spectral theory, and complex analytic geometry have been freshly interpreted using the language of homological algebra. It has also been used to give in sights into new developments in the spectral theory of linear operators. Various concepts from function theory and complex analytic geometry are drawn together and used to give a new approach to concrete spectral computations. The advantages of this approach are illustrated by a variety of examples, unexpected applications, and conceptually new ideas which should stimulate further research.
The aim of these lecture notes is to provide a self-contained exposition of several fascinating formulas discovered by Srinivasa Ramanujan. Two central results in these notes are: (1) the evaluation of the Rogers-Ramanujan continued fraction - a result that convinced G H Hardy that Ramanujan was a "mathematician of the highest class," and (2) what G. H. Hardy called Ramanujan's "Most Beautiful Identity." This book covers a range of related results, such as several proofs of the famous Rogers-Ramanujan identities and a detailed account of Ramanujan's congruences. It also covers a range of techniques in q-series.
This book provides a general introduction to applied analysis; vector analysis with physical motivation, calculus of variation, Fourier analysis, eigenfunction expansion, distribution, and so forth, including a catalogue of mathematical theories, such as basic analysis, topological spaces, complex function theory, real analysis, and abstract analysis. This book also uses fundamental ideas of applied mathematics to discuss recent developments in nonlinear science, such as mathematical modeling of reinforced random motion of particles, semiconductor device equation in applied physics, and chemotaxis in biology. Several tools in linear PDE theory, such as fundamental solutions, Perron's method, layer potentials, and iteration scheme, are described, as well as systematic descriptions on the recent study of the blowup of the solution.
The International Society for Analysis, its Applications and Computation (ISAAC) has held its international congresses biennially since 1997. This proceedings volume reports on the progress in analysis, applications and computation in recent years as covered and discussed at the 7th ISAAC Congress. This volume includes papers on partial differential equations, function spaces, operator theory, integral transforms and equations, potential theory, complex analysis and generalizations, stochastic analysis, inverse problems, homogenization, continuum mechanics, mathematical biology and medicine. With over 500 participants from almost 60 countries attending the congress, the book comprises a broad selection of contributions in different topics.
Here is an introduction to dynamical systems and ergodic theory with an emphasis on smooth actions of noncompact Lie groups. The main goal is to serve as an entry into the current literature on the ergodic theory of measure preserving actions of semisimple Lie groups for students who have taken the standard first year graduate courses in mathematics. The author develops in a detailed and self-contained way the main results on Lie groups, Lie algebras, and semisimple groups, including basic facts normally covered in first courses on manifolds and Lie groups plus topics such as integration of infinitesimal actions of Lie groups. He then derives the basic structure theorems for the real semisimple Lie groups, such as the Cartan and Iwasawa decompositions and gives an extensive exposition of the general facts and concepts from topological dynamics and ergodic theory, including detailed proofs of the multiplicative ergodic theorem and Moore's ergodicity theorem. This book should appeal to anyone interested in Lie theory, differential geometry and dynamical systems.
Is anything truly random? Does infinity actually exist? Could we ever see into other dimensions? In this delightful journey of discovery, David Darling and extraordinary child prodigy Agnijo Banerjee draw connections between the cutting edge of modern maths and life as we understand it, delving into the strange would we like alien music? and venturing out on quests to consider the existence of free will and the fantastical future of quantum computers. Packed with puzzles and paradoxes, mind-bending concepts and surprising solutions, this is for anyone who wants life s questions answered even those you never thought to ask.
Addressed mainly to physicist and chemical physicist, this textbook is the result of a broad compilation of current knowledge on analytical properties of Airy functions. In particular, the calculus implying the Airy functions is developed with care. In the latter chapters, examples are given to succinctly illustrate the use of Airy functions in classical and quantum physics. The physicist, for instance in fluid mechanics, can find what he is looking for, in the references for works of molecular physics or in physics of surfaces, and vice versa. The knowledge on Airy functions is frequently reviewed. The reason may be found in the need to express a physical phenomenon in terms of an effective and comprehensive analytical form for the whole scientific community.
This book contains papers presented at the Chicago Conference on Harmonic Analysis in 1981. The papers are compiled under topics, namely trigonometric series, singular integrals and pseudodifferential operators, hardy spaces, differentiation theory, and partial differential equations.
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators. After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions. This work is one of the first to systematically take the operator approach to the theory of analytic functions.
This established textbook is noted for its coverage of optimization methods that are of practical importance. It provides a thorough treatment of standard methods such as linear and quadratic programming, Newton-like methods and the conjugate gradient method. The theoretical aspects of the subject include an extended treatment of optimality conditions and the significance of Lagrange multipliers. The relevance of convexity theory to optimization is also not neglected. A significant proportion of the book is devoted to the solution of nonlinear problems, with an authoritative treatment of current methodology. Thus state of the art techniques such as the BFGS method, trust region methods and the SQP method are described and analysed. Other features are an extensive treatment of nonsmooth optimization and the L1 penalty function. Contents Part 1 Unconstrained Optimization Part 2 Constrained Optimization
This book is an unique integrated treatise, on the concepts of fractional calculus as models with applications in hydrology, soil science and geomechanics. The models are primarily fractional partial differential equations (fPDEs), and in limited cases, fractional differential equations (fDEs). It develops and applies relevant fPDEs and fDEs mainly to water flow and solute transport in porous media and overland, and in some cases, to concurrent flow and energy transfer. It is an integrated resource with theory and applications for those interested in hydrology, hydraulics and fluid mechanics. The self-contained book summaries the fundamentals for porous media and essential mathematics with extensive references supporting the development of the model and applications.
Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples - some of them both surprising and amusing - showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining relevant parts of the theory, and pointing out further reading. The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook Measures, Integrals and Martingales, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, it provides ample examples and warnings as to the limitations of general measure theory. This book forms a sister volume to Rene Schilling's other book Measures, Integrals and Martingales (www.cambridge.org/9781316620243).
Brings Readers Up to Speed in This Important and Rapidly Growing Area Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories. After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures. Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.
Convex geometry is at once simple and amazingly rich. While the classical results go back many decades, during that previous to this book's publication in 1999, the integral geometry of convex bodies had undergone a dramatic revitalization, brought about by the introduction of methods, results and, most importantly, new viewpoints, from probability theory, harmonic analysis and the geometry of finite-dimensional normed spaces. This book is a collection of research and expository articles on convex geometry and probability, suitable for researchers and graduate students in several branches of mathematics coming under the broad heading of 'Geometric Functional Analysis'. It continues the Israel GAFA Seminar series, which is widely recognized as the most useful research source in the area. The collection reflects the work done at the program in Convex Geometry and Geometric Analysis that took place at MSRI in 1996. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
One-Dimensional Ergodic Schrodinger…
David Damanik, Jake Fillman
Paperback
R2,198
Discovery Miles 21 980
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,971
Discovery Miles 29 710
|