Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The third edition of this widely popular textbook is authored by a master teacher. This book provides a mathematically rigorous introduction to analysis of real valued functions of one variable. This intuitive, student-friendly text is written in a manner that will help to ease the transition from primarily computational to primarily theoretical mathematics. The material is presented clearly and as intuitive as possible while maintaining mathematical integrity. The author supplies the ideas of the proof and leaves the write-up as an exercise. The text also states why a step in a proof is the reasonable thing to do and which techniques are recurrent. Examples, while no substitute for a proof, are a valuable tool in helping to develop intuition and are an important feature of this text. Examples can also provide a vivid reminder that what one hopes might be true is not always true. Features of the Third Edition: Begins with a discussion of the axioms of the real number system. The limit is introduced via sequences. Examples motivate what is to come, highlight the need for hypothesis in a theorem, and make abstract ideas more concrete. A new section on the Cantor set and the Cantor function. Additional material on connectedness. Exercises range in difficulty from the routine "getting your feet wet" types of problems to the moderately challenging problems. Topology of the real number system is developed to obtain the familiar properties of continuous functions. Some exercises are devoted to the construction of counterexamples. The author presents the material to make the subject understandable and perhaps exciting to those who are beginning their study of abstract mathematics. Table of Contents Preface Introduction The Real Number System Sequences of Real Numbers Topology of the Real Numbers Continuous Functions Differentiation Integration Series of Real Numbers Sequences and Series of Functions Fourier Series Bibliography Hints and Answers to Selected Exercises Index Biography James R. Kirkwood holds a Ph.D. from University of Virginia. He has authored fifteen, published mathematics textbooks on various topics including calculus, real analysis, mathematical biology and mathematical physics. His original research was in mathematical physics, and he co-authored the seminal paper in a topic now called Kirkwood-Thomas Theory in mathematical physics. During the summer, he teaches real analysis to entering graduate students at the University of Virginia. He has been awarded several National Science Foundation grants. His texts, Elementary Linear Algebra, Linear Algebra, and Markov Processes, are also published by CRC Press.
This book explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. Each of the 23 carefully reviewed chapters was written by experienced expert(s) in respective field, and will enrich readers' understanding of the respective research problems, providing them with sufficient background to understand the theories, methods and applications discussed. The book's main goal is to highlight the latest trends and advances, equipping interested readers to pursue further research of their own. Given its scope, the book will especially benefit graduate and PhD students, researchers in the applied sciences, educators, and engineers with an interest in recent developments in the interdisciplinary applications of mathematical analysis.
Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer's 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate students in mathematics, applied mathematics and engineering, in particular, engineers working in signal and image processing.
The book is a revised and updated version of the lectures given by the author at the University of Timi oara during the academic year 1990-1991. Its goal is to present in detail someold and new aspects ofthe geometry ofsymplectic and Poisson manifolds and to point out some of their applications in Hamiltonian mechanics and geometric quantization. The material is organized as follows. In Chapter 1 we collect some general facts about symplectic vector spaces, symplectic manifolds and symplectic reduction. Chapter 2 deals with the study ofHamiltonian mechanics. We present here the gen- eral theory ofHamiltonian mechanicalsystems, the theory ofthe corresponding Pois- son bracket and also some examples ofinfinite-dimensional Hamiltonian mechanical systems. Chapter 3 starts with some standard facts concerning the theory of Lie groups and Lie algebras and then continues with the theory ofmomentum mappings and the Marsden-Weinstein reduction. The theory of Hamilton-Poisson mechan- ical systems makes the object of Chapter 4. Chapter 5 js dedicated to the study of the stability of the equilibrium solutions of the Hamiltonian and the Hamilton- Poisson mechanical systems. We present here some of the remarcable results due to Holm, Marsden, Ra~iu and Weinstein. Next, Chapter 6 and 7 are devoted to the theory of geometric quantization where we try to solve, in a geometrical way, the so called Dirac problem from quantum mechanics. We follow here the construc- tion given by Kostant and Souriau around 1964.
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the local spectral asymptotics of Volume I in the regular part of the domain are combined with variational estimates in the vicinity of singularities, and global asymptotics are derived in the general form. They are then applied to multiple cases and asymptotics with respect to a spectral parameter. Finally, cases in which only general methods but not the results can be applied (non-standard asymptotics) are studied.
This book examines Multi-Criteria Decision Modelling (MCDM) methodologies and facilitates diverse ways for strategic decision-making in a variety of practical applications. This book also provides a pragmatic foundation for solving real-life problems in different scenarios of emerging global markets. Multi-Criteria Decision Modelling: Applicational Techniques and Case Studies depicts the use of sensitivity analysis and modelling and includes case studies to understand and illustrate challenging concepts. It also offers step-by-step comprehensive methodologies for the utilization of MCDM to a variety of situations. The book deliberates ways for companies to use these methods to their advantage in order to achieve sustainability. Furthermore, it also presents an overview of the major streams of thought and provides a holistic view of the latest research and development trends in modelling and optimization. FEATURES Offers a stepwise comprehensive methodology for the application of MCDM to a variety of situations Presents an overview of the major streams of thought present in the MCDM technique Provides a holistic view of the latest research and development trends in the emerging markets in terms of modelling and optimization using MCDM for different industrial sectors Illuminates a practical foundation in order to provide a guide to address the problems of emerging markets Enlightens the ways for companies to use these methods to their advantage to be able to achieve sustainability This book is a guide for those performing decision analysis for academic purposes as well as for researchers aspiring to expand their knowledge on MCDM problem solving.
An international community of experts scientists comprise the research and survey contributions in this volume which covers a broad spectrum of areas in which analysis plays a central role. Contributions discuss theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. This volume is useful to graduate students and researchers working in mathematics, physics, engineering, and economics.
Primarily aimed at researchers and postgraduates, but may be of interest to some professionals working in related fields, such as the insurance industry Suitable as supplementary reading for a standard course in applied probability Requires minimal prerequisites in mathematical analysis and probability theory
This book contains some of the results presented at the mini-symposium titled Emerging Problems in the Homogenization of Partial Differential Equations, held during the ICIAM2019 conference in Valencia in July 2019. The papers cover a large range of topics, problems with weak regularity data involving renormalized solutions, eigenvalue problems for complicated shapes of the domain, homogenization of partial differential problems with strongly alternating boundary conditions of Robin type with large parameters, multiscale analysis of the potential action along a neuron with a myelinated axon, and multi-scale model of magnetorheological suspensions. The volume is addressed to scientists who deal with complex systems that presents several elements (characteristics, constituents...) of very different scales, very heterogeneous, and search for homogenized models providing an effective (macroscopic) description of their behaviors.
A First Course in Ergodic Theory provides readers with an introductory course in Ergodic Theory. This textbook has been developed from the authors' own notes on the subject, which they have been teaching since the 1990s. Over the years they have added topics, theorems, examples and explanations from various sources. The result is a book that is easy to teach from and easy to learn from - designed to require only minimal prerequisites. Features Suitable for readers with only a basic knowledge of measure theory, some topology and a very basic knowledge of functional analysis Perfect as the primary textbook for a course in Ergodic Theory Examples are described and are studied in detail when new properties are presented.
The aim of this book is to provide insight into Data Science and Artificial Learning Techniques based on Industry 4.0, conveys how Machine Learning & Data Science are becoming an essential part of industrial and academic research. Varying from healthcare to social networking and everywhere hybrid models for Data Science, Al, and Machine Learning are being used. The book describes different theoretical and practical aspects and highlights how new systems are being developed. Along with focusing on the research trends, challenges and future of AI in Data Science, the book explores the potential for integration of advanced AI algorithms, addresses the challenges of Data Science for Industry 4.0, covers different security issues, includes qualitative and quantitative research, and offers case studies with working models. This book also provides an overview of AI and Data Science algorithms for readers who do not have a strong mathematical background. Undergraduates, postgraduates, academicians, researchers, and industry professionals will benefit from this book and use it as a guide.
This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25-30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs.This graduate-level text provides an entry for students into an active field of research and serves as a standard reference for researchers.
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.
This is a graduate level textbook on measure theory and probability theory. It presents the main concepts and results in measure theory and probability theory in a simple and easy-to-understand way. It further provides heuristic explanations behind the theory to help students see the big picture. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. Prerequisites are kept to the minimal level and the book is intended primarily for first year Ph.D. students in mathematics and statistics.
The prime goal of this monograph, which comprises a total of five volumes, is to derive sharp spectral asymptotics for broad classes of partial differential operators using techniques from semiclassical microlocal analysis, in particular, propagation of singularities, and to subsequently use the variational estimates in "small" domains to consider domains with singularities of different kinds. In turn, the general theory (results and methods developed) is applied to the Magnetic Schroedinger operator, miscellaneous problems, and multiparticle quantum theory. In this volume the methods developed in Volumes I and II are applied to the Schroedinger and Dirac operators in smooth settings in dimensions 2 and 3.
This book offers the latest research advances in the field of mathematics applications in engineering sciences and provides a reference with a theoretical and sound background, along with case studies. In recent years, mathematics has had an amazing growth in engineering sciences. It forms the common foundation of all engineering disciplines. This new book provides a comprehensive range of mathematics applied to various fields of engineering for different tasks in fields such as civil engineering, structural engineering, computer science, electrical engineering, among others. It offers articles that develop the applications of mathematics in engineering sciences, conveys the innovative research ideas, offers real-world utility of mathematics, and plays a significant role in the life of academics, practitioners, researchers, and industry leaders. Focuses on the latest research in the field of engineering applications Includes recent findings from various institutions Identifies the gaps in the knowledge of the field and provides the latest approaches Presents international studies and findings in modelling and simulation Offers various mathematical tools, techniques, strategies, and methods across different engineering fields
Linear Operators and Their Essential Pseudospectra provides a comprehensive study of spectral theory of linear operators defined on Banach spaces. The central items of interest in the volume include various essential spectra, but the author also considers some of the generalizations that have been studied. In recent years, spectral theory has witnessed an explosive development. This volume presents a survey of results concerning various types of essential spectra and pseudospectra in a unified, axiomatic way and also discusses several topics that are new but which relate to the concepts and methods emanating from the book. The main topics include essential spectra, essential pseudospectra, structured essential pseudospectra, and their relative sets. This volume will be very useful for several researchers since it represents not only a collection of previously heterogeneous material but also includes discussions of innovation through several extensions. As the spectral theory of operators is an important part of functional analysis and has numerous applications in many areas of mathematics, the author suggests that some modest prerequisites from functional analysis and operator theory should be in place to be accessible to newcomers and graduate students of mathematics.
This new book aims to provide to both beginners and experts with a completely algorithmic approach to data analysis and conceptual modeling, database design, implementation, and tuning, starting from vague and incomplete customer requests and ending with IBM DB/2, Oracle, MySQL, MS SQL Server, or Access based software applications. A rich panoply of solutions to actual useful data sub-universes (e.g. business, university, public and home library, geography, history, etc.) is provided, constituting a powerful library of examples. Four data models are presented and used: the graphical Entity-Relationship, the mathematical EMDM, the physical Relational, and the logical deterministic deductive Datalogones. For each one of them, best practice rules, algorithms, and the theory beneath are clearly separated. Four case studies, from a simple public library example, to a complex geographical study are fully presented, on all needed levels. Several dozens of real life exercises are proposed, out of which at least one per chapter is completely solved. Both major historical and up-to-date references are provided for each of the four data models considered. The book provides a library of useful solutions to real-life problems and provides valuable knowledge on data analysis and modeling, database design, implementation, and fine tuning.
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
Now available in a fully revised and updated new edition, this well established textbook affords a clear introduction to the theory of probability. Topics covered include conditional probability, independence, discrete and continuous random variables, generating functions and limit theorems, and an introduction to Markov chains. The text is accessible to undergraduate students and provides numerous examples and exercises to help develop the important skills necessary for problem solving. First edition Hb (1994): 0-521-42028-8 First Edition Pb (1994); 0-521-42183-7
Designed for one-semester courses at the senior undergraduate level, this book is written for mathematics students and teachers, as well as others needing to learn mathematical analysis for engineering, physics, biology or finance. Nominal divisions between pure and applied mathematics have been merged to provide easier access. Applications are included from differential and integral equations, systems of linear algebraic equations, approximation theory, numerical analysis and quantum mechanics.
This book collects papers related to the session “Harmonic Analysis and Partial Differential Equations” held at the 13th International ISAAC Congress in Ghent and provides an overview on recent trends and advances in the interplay between harmonic analysis and partial differential equations. The book can serve as useful source of information for mathematicians, scientists and engineers. The volume contains contributions of authors from a variety of countries on a wide range of active research areas covering different aspects of partial differential equations interacting with harmonic analysis and provides a state-of-the-art overview over ongoing research in the field. It shows original research in full detail allowing researchers as well as students to grasp new aspects and broaden their understanding of the area. |
You may like...
Precalculus: Mathematics for Calculus…
James Stewart, Lothar Redlin, …
Paperback
(2)
R2,410 Discovery Miles 24 100
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Thomas' Calculus: Early Transcendentals…
Joel Hass, Christopher Heil, …
R2,452
Discovery Miles 24 520
|