![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Computational Analysis of Structured Media presents a systematical approach to analytical formulae for the effective properties of deterministic and random composites. Schwarz's method and functional equations yield for use in symbolic-numeric computations relevant to the effective properties. The work is primarily concerned with constructive topics of boundary value problems, complex analysis, and their applications to composites. Symbolic-numerical computations are widely used to deduce new formulae interesting for applied mathematicians and engineers. The main line of presentation is the investigation of two-phase 2D composites with non-overlapping inclusions randomly embedded in matrices.
An engineer's guide to numerical analysis To properly function in today's work environment, engineers require a working familiarity with numerical analysis. This book provides that necessary background, striking a balance between analytical rigor and an applied approach focusing on methods particular to the solving of engineering problems. An Introduction to Numerical Analysis for Electrical and Computer Engineers gives electrical and computer engineering students their first exposure to numerical analysis and serves as a refresher for professionals as well. Emphasizing the earlier stages of numerical analysis for engineers with real-life solutions for computing and engineering applications, the book: Forms a logical bridge between first courses in matrix/linear algebra and the more sophisticated methods of signal processing and control system courses Includes MATLAB(r)-oriented examples, with a quick introduction to MATLAB for those who need it Provides detailed proofs and derivations for many key results Specifically tailored to the needs of computer and electrical engineers, this is the resource engineers have long needed in order to master an area of mathematics critical to the
Brings Readers Up to Speed in This Important and Rapidly Growing Area Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories. After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures. Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators. After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions. This work is one of the first to systematically take the operator approach to the theory of analytic functions.
For the 7th Edition of CALCULUS: EARLY TRANSCENDENTAL FUNCTIONS, INTERNATIONAL METRIC EDITION, the companion website LarsonCalculus.com offers free access to multiple tools and resources to supplement your learning. Stepped-out solution videos with instruction are available at CalcView.com for selected exercises throughout the text. The website CalcChat.com presents free solutions to odd-numbered exercises in the text. The site currently has over 1 million hits per month, so the authors analyzed these hits to see which exercise solutions you were accessing most often. They revised and refined the exercise sets based on this analysis. The result is the only calculus book on the market that uses real data about its exercises to address your needs.
Multidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point a1Ie.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The book is aimed at graduate students and researchers with basic knowledge of Probability and Integration Theory. It introduces classical inequalities in vector and functional spaces with applications to probability. It also develops new extensions of the analytical inequalities, with sharper bounds and generalizations to the sum or the supremum of random variables, to martingales and to transformed Brownian motions. The proofs of the new results are presented in great detail.
Activation Spectrometry in Chemical Analysis Susan J. Parry In clear, easy-to-read language, Activation Spectrometry in Chemical Analysis provides a straightforward review of just what activation analysis can do, describing the technique as it is currently applied to biomedical, environmental, geological, and industrial analytical problems. The book outlines the specifics of the procedures that have proven critical to the technique’s success and describes the current status of activation spectrometry in a concise, three-part format: principles, techniques, and applications. Written for undergraduates and postgraduates in universities, research institutes, government, or industry, the book provides the first definitive look at the day-to-day and key uses of the method that is at once challenging and intriguing, yet simple to grasp. 1991 (0 471-63844-7) 264 pp. Principles and Practice of Spectroscopic Calibration Howard Mark Clearly linking theory with applications, this unique guide to spectroscopic calibration advances an approach that is understandable, free of the usual uncertainties, and simple to execute. The book details the practical aspects of generating a calibration equation, as well as the basics of recognizing and dealing with different types of problems affecting calibration. Most of the procedures are applicable to such sophisticated and popular approaches as Principal Component Calibration (PCA), Partial Least Squares Calibration (PLS), and Fourier Transform Calibration. 1991 (0 471-54614-3) 192 pp. Analytical Raman Spectroscopy Edited by Jeanette G. Grasselli and Bernard J. Bulkin Analytical Raman Spectroscopy charts, through a series of contributed articles, the spectacular versatility of the method and its applications in semiconductor characterization, synthetic organic polymer analysis, organic and petrochemical analysis, heterogeneous catalysts, and biological studies. Chapters feature an outline structure which systematically details the critical aspects of each subject discussed. The book provides a unique look at the field’s fundamental operational techniques, instrumentation, and up-to-the-minute advances: components of modern Raman spectrometers; Raman spectroscopy of inorganic species in solution; quantitative analysis by Raman spectroscopy; and much more. 1991 (0 471-51955-3) 480 pp.
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.
This unique book provides a new and well-motivated introduction to calculus and analysis, historically significant fundamental areas of mathematics that are widely used in many disciplines. It begins with familiar elementary high school geometry and algebra, and develops important concepts such as tangents and derivatives without using any advanced tools based on limits and infinite processes that dominate the traditional introductions to the subject. This simple algebraic method is a modern version of an idea that goes back to Rene Descartes and that has been largely forgotten. Moving beyond algebra, the need for new analytic concepts based on completeness, continuity, and limits becomes clearly visible to the reader while investigating exponential functions.The author carefully develops the necessary foundations while minimizing the use of technical language. He expertly guides the reader to deep fundamental analysis results, including completeness, key differential equations, definite integrals, Taylor series for standard functions, and the Euler identity. This pioneering book takes the sophisticated reader from simple familiar algebra to the heart of analysis. Furthermore, it should be of interest as a source of new ideas and as supplementary reading for high school teachers, and for students and instructors of calculus and analysis.
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative k-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here. The book is based on a fifteen-week course which the author offered to first or second year graduate students with a foundation in measure theory and elementary functional analysis.
For a three-semester or four-quarter calculus course covering single variable and multivariable calculus for mathematics, engineering, and science majors. This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students' geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows. The groundbreaking eBook contains over 650 Interactive Figures that can be manipulated to shed light on key concepts. This text offers a superior teaching and learning experience.Here's how: *A robust MyMathLab(r) course contains more than 7,000 assignable exercises, an eBook with 650 Interactive Figures, and built-in tutorials so students can get help when they need it. *Reflects how students use a textbook-they start with the exercises and flip back for help if they need it. *Organization and presentation of content facilitates learning of key concepts, skills, and applications.
The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics - such as the classical central limit theorem - which are usually formulated in terms of convergence in distribution. Originated by Alfred Renyi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level with a solid knowledge of measure theoretic probability.
A number of texts have recently become available which provide good general introductions to p-Adic numbers and p-Adic analysis. However, there is at present a gap between such books and the sophisticated applications in the research literature. The aim of this book is to bridge this gulf by providing a collection of intermediate level articles on various applications of p-Adic techniques throughout mathematics. The idea for producing such a volume was suggested by Oxford University Press in connection with a three day meeting `p-Adic Methods and their Applications' held at Manchester University in September 1989 and which have received financial support from the London Mathematical Society. Some of these articles grew out of talks given at this conference, others were written by invitation especially for this volume. All contributions were refereed with a particular view to their suitability for inclusion in such a book.
A discrete event system (DES) is an abstraction of many engineering and service systems characterized by event-driven dynamics. Examples include computer systems, communication networks, airports and highways. The evolution of DES is governed by events, typically occurring at random time periods. Developing new mathematical tools to study discrete event operations research, this study discusses the two lines of investigation in DES research that have emerged: logical/qualitative issues and temporal/quantitative analysis.
In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2013) held in Zaragoza, Spain, on September 3-4, 2013. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.
This book acquaints the reader with the esental ideas of K-homology and develops some of its applications. It includes a detailed introduction to the necessary functional analysis, followed by an exploration of the connections between K-homology and operator theory, coarse geometry, index theory, and assembly maps.
Summability methods are transformations that map sequences (or functions) to sequences (or functions). A prime requirement for a "good" summability method is that it preserves convergence. Unless it is the identity transformation, it will do more: it will transform some divergent sequences to convergent sequences. An important type of theorem is called a Tauberian theorem. Here, we know that a sequence is summable. The sequence satisfies a further property that implies convergence. Borel's methods are fundamental to a whole class of sequences to function methods. The transformation gives a function that is usually analytic in a large part of the complex plane, leading to a method for analytic continuation. These methods, dated from the beginning of the 20th century, have recently found applications in some problems in theoretical physics.
Piece-wise and Max-Type Difference Equations: Periodic and Eventually Periodic Solutions is intended for lower-level undergraduate students studying discrete mathematics. The book focuses on sequences as recursive relations and then transitions to periodic recursive patterns and eventually periodic recursive patterns. In addition to this, it will also focus on determining the patterns of periodic and eventually periodic solutions inductively. The aim of the author, throughout this book, is to get students to understand the significance of pattern recognition as a mathematical tool. Key Features Can provide possible topics for undergraduate research and for bachelor's thesis Provides supplementary practice problems and some open-ended research problems at the end of each chapter Focusses on determining the patterns of periodic and eventually periodic solutions inductively Enhances students' algebra skills before moving forward to upper level courses Familiarize students with the topics before they start undergraduate research by providing applications.
This monograph contains the author's work of the last four years in discrete and fractional analysis. It introduces the right delta and right nabla fractional calculus on time scales and continues with the right delta and right nabla discrete fractional calculus in the Caputo sense. Then, it shows representation formulae of functions on time scales and presents Ostrowski type inequalities, Landau type inequalities, Gruss type and comparison of means inequalities, all these over time scales. The volume continues with integral operator inequalities and their multivariate vectorial versions using convexity of functions, again all these over time scales. It follows the Gruss and Ostrowski type inequalities involving s-convexity of functions; and also examines the general case when several functions are involved. Then, it presents the general fractional Hermite-Hadamard type inequalities using m-convexity and (s, m)-convexity. Finally, it introduces the reduction method in fractional calculus and its connection to fractional Ostrowski type inequalities is studied.This book's results are expected to find applications in many areas of pure and applied mathematics, especially in difference equations and fractional differential equations. The chapters are self-contained and can be read independently, and advanced courses can be taught out of it. It is suitable for researchers, graduate students, seminars of the above subjects, and serves well as an invaluable resource for all science libraries.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on "Stochastics of Environmental and Financial Economics (SEFE)", being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.
This book is an introduction to real analysis for a one-semester course aimed at students who have completed the calculus sequence and preferably one other course, such as linear algebra. It does not assume any specific knowledge and starts with all that is needed from sets, logic, and induction. Then there is a careful introduction to the real numbers with an emphasis on developing proof-writing skills. It continues with a logical development of the notions of sequences, open and closed sets (including compactness and the Cantor set), continuity, differentiation, integration, and series of numbers and functions. A theme in the book is to give more than one proof for interesting facts; this illustrates how different ideas interact and it makes connections among the facts that are being learned. Metric spaces are introduced early in the book, but there are instructions on how to avoid metric spaces for the instructor who wishes to do so. There are questions that check the readers' understanding of the material, with solutions provided at the end. Topics that could be optional or assigned for independent reading include the Cantor function, nowhere differentiable functions, the Gamma function, and the Weierstrass theorem on approximation by continuous functions. |
![]() ![]() You may like...
Extremisms In Africa
Alain Tschudin, Stephen Buchanan-Clarke, …
Paperback
![]()
The Soweto Uprisings - Counter-Memories…
Sifiso Mxolisi Ndlovu
Paperback
![]()
Modeling and Simulation with Compose and…
Stephen L. Campbell, Ramine Nikoukhah
Hardcover
R3,445
Discovery Miles 34 450
|