![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
'It is a great book for a first year (US) graduate student. One of the nice features of the book is that the book contains full solutions for all of the problems which make it useful as reference for self-study or qualifying exam prep.' (See Full Review)MAA ReviewsIn this third volume of 'A Course in Analysis', two topics indispensible for every mathematician are treated: Measure and Integration Theory; and Complex Function Theory.In the first part measurable spaces and measure spaces are introduced and Caratheodory's extension theorem is proved. This is followed by the construction of the integral with respect to a measure, in particular with respect to the Lebesgue measure in the Euclidean space. The Radon-Nikodym theorem and the transformation theorem are discussed and much care is taken to handle convergence theorems with applications, as well as Lp-spaces.Integration on product spaces and Fubini's theorem is a further topic as is the discussion of the relation between the Lebesgue integral and the Riemann integral. In addition to these standard topics we deal with the Hausdorff measure, convolutions of functions and measures including the Friedrichs mollifier, absolutely continuous functions and functions of bounded variation. The fundamental theorem of calculus is revisited, and we also look at Sard's theorem or the Riesz-Kolmogorov theorem on pre-compact sets in Lp-spaces.The text can serve as a companion to lectures, but it can also be used for self-studying. This volume includes more than 275 problems solved completely in detail which should help the student further.
'It is a great book for a first year (US) graduate student. One of the nice features of the book is that the book contains full solutions for all of the problems which make it useful as reference for self-study or qualifying exam prep.' (See Full Review)MAA ReviewsIn this third volume of 'A Course in Analysis', two topics indispensible for every mathematician are treated: Measure and Integration Theory; and Complex Function Theory.In the first part measurable spaces and measure spaces are introduced and Caratheodory's extension theorem is proved. This is followed by the construction of the integral with respect to a measure, in particular with respect to the Lebesgue measure in the Euclidean space. The Radon-Nikodym theorem and the transformation theorem are discussed and much care is taken to handle convergence theorems with applications, as well as Lp-spaces.Integration on product spaces and Fubini's theorem is a further topic as is the discussion of the relation between the Lebesgue integral and the Riemann integral. In addition to these standard topics we deal with the Hausdorff measure, convolutions of functions and measures including the Friedrichs mollifier, absolutely continuous functions and functions of bounded variation. The fundamental theorem of calculus is revisited, and we also look at Sard's theorem or the Riesz-Kolmogorov theorem on pre-compact sets in Lp-spaces.The text can serve as a companion to lectures, but it can also be used for self-studying. This volume includes more than 275 problems solved completely in detail which should help the student further.
This book covers various topics related to direct integral theory, including Borel spaces, direct integral of Hilbert spaces and operators, direct integrals of representations, direct integrals and types of von Neumann algebras, and measures on the quasi-dual representations.
This book is an introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. The authors provide a number of applications, principally to number theory and arithmetic progressions (through Van der Waerden's theorem and Szemerdi's theorem). This text is suitable for advanced undergraduate and beginning graduate students.
Brings Readers Up to Speed in This Important and Rapidly Growing Area Supported by many examples in mathematics, physics, economics, engineering, and other disciplines, Essentials of Topology with Applications provides a clear, insightful, and thorough introduction to the basics of modern topology. It presents the traditional concepts of topological space, open and closed sets, separation axioms, and more, along with applications of the ideas in Morse, manifold, homotopy, and homology theories. After discussing the key ideas of topology, the author examines the more advanced topics of algebraic topology and manifold theory. He also explores meaningful applications in a number of areas, including the traveling salesman problem, digital imaging, mathematical economics, and dynamical systems. The appendices offer background material on logic, set theory, the properties of real numbers, the axiom of choice, and basic algebraic structures. Taking a fresh and accessible approach to a venerable subject, this text provides excellent representations of topological ideas. It forms the foundation for further mathematical study in real analysis, abstract algebra, and beyond.
An engineer's guide to numerical analysis To properly function in today's work environment, engineers require a working familiarity with numerical analysis. This book provides that necessary background, striking a balance between analytical rigor and an applied approach focusing on methods particular to the solving of engineering problems. An Introduction to Numerical Analysis for Electrical and Computer Engineers gives electrical and computer engineering students their first exposure to numerical analysis and serves as a refresher for professionals as well. Emphasizing the earlier stages of numerical analysis for engineers with real-life solutions for computing and engineering applications, the book: Forms a logical bridge between first courses in matrix/linear algebra and the more sophisticated methods of signal processing and control system courses Includes MATLAB(r)-oriented examples, with a quick introduction to MATLAB for those who need it Provides detailed proofs and derivations for many key results Specifically tailored to the needs of computer and electrical engineers, this is the resource engineers have long needed in order to master an area of mathematics critical to the
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields. This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
Mathematics is the fundamental knowledge for every scientist. As an academic at the University of Science and Technology of China, Professor Sheng Gong takes his passion for mathematics teaching even further. Besides imparting knowledge to students from the Department of Mathematics, he has created and developed his method of teaching Calculus to help students from physics, engineering and other sciences disciplines understand Calculus faster and deeper in order to meet the needs of applications in their own fields. This book is based on Professor Sheng Gong's 42 years of teaching experience along with a touch of applications of Calculus in other fields such as computer science, engineering. Science students will benefit from the unique way of illustrating theorems in Calculus and also perceive Calculus as a whole instead of a combination of separate topics. The practical examples provided in the book bring motivation to students to learn Calculus.
This second edition provides a broad range of methods and concepts required for the analysis and solution of equations which arise in the modeling of phenomena in the natural, engineering, and applied mathematical sciences. It may be used productively by both undergraduate and graduate students, as well as others who wish to learn, understand, and apply these techniques. Detailed discussions are also given for several topics that are not usually included in standard textbooks at this level of presentation: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations and several perturbation procedures. Further, this second edition includes several new topics covering functional equations, the Lambert-W function, nonstandard sets of periodic functions, and the method of dominant balance. Each chapter contains a large number of worked examples and provides references to the appropriate books and literature.
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.
In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hoelderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.
Multidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
This book provides a thorough and self-contained study of interdependence and complexity in settings of functional analysis, harmonic analysis and stochastic analysis. It focuses on "dimension" as a basic counter of degrees of freedom, leading to precise relations between combinatorial measurements and various indices originating from the classical inequalities of Khintchin, Littlewood and Grothendieck. Topics include the (two-dimensional) Grothendieck inequality and its extensions to higher dimensions, stochastic models of Brownian motion, degrees of randomness and Fréchet measures in stochastic analysis. This book is primarily aimed at graduate students specializing in harmonic analysis, functional analysis or probability theory. It contains many exercises and is suitable as a textbook. It is also of interest to computer scientists, physicists, statisticians, biologists and economists.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point a1Ie.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.
In this monograph, we present the authors' recent work of the last seven years in Approximation Theory. Chapters are self-contained and can be read independently and advanced courses can be taught out of this book. Here our generalized discrete singular operators are of the following types: Picard, Gauss-Weierstrass and Poisson-Cauchy operators. We treat both the unitary and non-unitary, univariate and multivariate cases of these operators, which are not necessarily positive operators. The book's results are expected to find applications in many areas of pure and applied mathematics, and statistics. As such, it is suitable for researchers, graduate students, and seminars of related subjects, and serves well as an invaluable resource for all science libraries.
Bessel and Mittag-Leffler functions are prominent within mathematical and scientific fields due to increasing interest in non-conventional models within applied mathematics. Since the analytical solutions of many differential and integral equations of arbitrary order can be written as series of special functions of fractional calculus, they are now unavoidable tools for handling various mathematical models of integer or fractional order. From Bessel to Multi-Index Mittag-Leffler Functions analyzes this through the study of enumerable families of different classes of special functions.Enumerable families are considered and the convergence of series is investigated. Providing a unified approach to the classical power series, analogues of the classical results for the power series are obtained, and the conclusion is that each of the considered series has a similar convergence behavior to a power series. Also studied are various properties of the Bessel and Mittag-Leffler functions and their generalizations, including estimations, asymptotic formulae, fractional differentiation and integration operators.
Activation Spectrometry in Chemical Analysis Susan J. Parry In clear, easy-to-read language, Activation Spectrometry in Chemical Analysis provides a straightforward review of just what activation analysis can do, describing the technique as it is currently applied to biomedical, environmental, geological, and industrial analytical problems. The book outlines the specifics of the procedures that have proven critical to the technique’s success and describes the current status of activation spectrometry in a concise, three-part format: principles, techniques, and applications. Written for undergraduates and postgraduates in universities, research institutes, government, or industry, the book provides the first definitive look at the day-to-day and key uses of the method that is at once challenging and intriguing, yet simple to grasp. 1991 (0 471-63844-7) 264 pp. Principles and Practice of Spectroscopic Calibration Howard Mark Clearly linking theory with applications, this unique guide to spectroscopic calibration advances an approach that is understandable, free of the usual uncertainties, and simple to execute. The book details the practical aspects of generating a calibration equation, as well as the basics of recognizing and dealing with different types of problems affecting calibration. Most of the procedures are applicable to such sophisticated and popular approaches as Principal Component Calibration (PCA), Partial Least Squares Calibration (PLS), and Fourier Transform Calibration. 1991 (0 471-54614-3) 192 pp. Analytical Raman Spectroscopy Edited by Jeanette G. Grasselli and Bernard J. Bulkin Analytical Raman Spectroscopy charts, through a series of contributed articles, the spectacular versatility of the method and its applications in semiconductor characterization, synthetic organic polymer analysis, organic and petrochemical analysis, heterogeneous catalysts, and biological studies. Chapters feature an outline structure which systematically details the critical aspects of each subject discussed. The book provides a unique look at the field’s fundamental operational techniques, instrumentation, and up-to-the-minute advances: components of modern Raman spectrometers; Raman spectroscopy of inorganic species in solution; quantitative analysis by Raman spectroscopy; and much more. 1991 (0 471-51955-3) 480 pp.
This book provides an extensive collection of problems with detailed solutions in introductory and advanced matrix calculus. Supplementary problems in each chapter will challenge and excite the reader, ideal for both graduate and undergraduate mathematics and theoretical physics students. The coverage includes systems of linear equations, linear differential equations, integration and matrices, Kronecker product and vec-operation as well as functions of matrices. Furthermore, specialized topics such as spectral theorem, nonnormal matrices and mutually unbiased bases are included. Many of the problems are related to applications for group theory, Lie algebra theory, wavelets, graph theory and matrix-valued differential forms, benefitting physics and engineering students and researchers alike. It also branches out to problems with tensors and the hyperdeterminant. Computer algebra programs in Maxima and SymbolicC++ have also been provided.
This book provides an extensive collection of problems with detailed solutions in introductory and advanced matrix calculus. Supplementary problems in each chapter will challenge and excite the reader, ideal for both graduate and undergraduate mathematics and theoretical physics students. The coverage includes systems of linear equations, linear differential equations, integration and matrices, Kronecker product and vec-operation as well as functions of matrices. Furthermore, specialized topics such as spectral theorem, nonnormal matrices and mutually unbiased bases are included. Many of the problems are related to applications for group theory, Lie algebra theory, wavelets, graph theory and matrix-valued differential forms, benefitting physics and engineering students and researchers alike. It also branches out to problems with tensors and the hyperdeterminant. Computer algebra programs in Maxima and SymbolicC++ have also been provided.
'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
This volume contains recent papers by several specialists in different fields of mathematical analysis. It offers a reasonably wide perspective of the current state of research, and new trends, in areas related to measure theory, harmonic analysis, non-associative structures in functional analysis and summability in locally convex spaces.Those interested in researching any areas of mathematical analysis will find here numerous suggestions on possible topics with an important impact today. Often, the contributions are presented in an expository nature and this makes the discussed topics accessible to a more general audience.
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative k-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here. The book is based on a fifteen-week course which the author offered to first or second year graduate students with a foundation in measure theory and elementary functional analysis. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
Finer Thermodynamic Formalism - Distance…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,305
Discovery Miles 43 050
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,427
Discovery Miles 34 270
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,623
Discovery Miles 26 230
|