![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book contains papers on complex analysis, function spaces, harmonic analysis, and operators, presented at the International seminar on Functional Analysis, Holomorphy, and Approximation Theory held in 1979. It is addressed to mathematicians and advanced graduate students in mathematics.
This book contains expanded versions of the talks given at the conference held in honour of professor Ky Fan in California in 1985, as well as papers on nonlinear and convex analysis as contributions to Ky Fan. It also includes a list of publications by Ky Fan.
This book presents a detailed account of some results about subalgebras of C(X), which carry a Banach algebra norm. It is intended for students who have had a standard graduate real-variable course and be acquainted with a few odds and ends of functional analysis and complex-variables.
This book contains articles on maximal regulatory problems, interpolation spaces, multiplicative perturbations of generators, linear and nonlinear evolution equations, integrodifferential equations, dual semigroups, positive semigroups, applications to control theory, and boundary value problems.
This book comprises five parts. The first three contain ten historical essays on important topics: number theory, calculus/analysis, and proof, respectively. Part four deals with several historically oriented courses, and Part five provides biographies of five mathematicians who played major roles in the historical events described in the first four parts of the work. "Excursions in the History of Mathematics" was written with several goals in mind: to arouse mathematics teachers' interest in the history of their subject; to encourage mathematics teachers with at least some knowledge of the history of mathematics to offer courses with a strong historical component; and to provide an historical perspective on a number of basic topics taught in mathematics courses."
This new volume shows how it is possible to further develop and essentially extend the theory of operators in infinite-dimensional vector spaces, which plays an important role in mathematics, physics, information theory, and control theory. The book describes new mathematical structures, such as hypernorms, hyperseminorms, hypermetrics, semitopological vector spaces, hypernormed vector spaces, and hyperseminormed vector spaces. It develops mathematical tools for the further development of functional analysis and broadening of its applications. Exploration of semitopological vector spaces, hypernormed vector spaces, hyperseminormed vector spaces, and hypermetric vector spaces is the main topic of this book. A new direction in functional analysis, called quantum functional analysis, has been developed based on polinormed and multinormed vector spaces and linear algebras. At the same time, normed vector spaces and topological vector spaces play an important role in physics and in control theory. To make this book comprehendible for the reader and more suitable for students with some basic knowledge in mathematics, denotations and definitions of the main mathematical concepts and structures used in the book are included in the appendix, making the book useful for enhancing traditional courses of calculus for undergraduates, as well as for separate courses for graduate students. The material of Semitopological Vector Spaces: Hypernorms, Hyperseminorms and Operators is closely related to what is taught at colleges and universities. It is possible to use a definite number of statements from the book as exercises for students because their proofs are not given in the book but left for the reader.
A colloquium on operator theory was held in Vienna, Austria, in March 2004, on the occasion of the retirement of Heinz Langer, a leading expert in operator theory and indefinite inner product spaces. The book contains fifteen refereed articles reporting on recent and original results in various areas of operator theory, all of them related with the work of Heinz Langer. The topics range from abstract spectral theory in Krein spaces to more concrete applications, such as boundary value problems, the study of orthogonal functions, or moment problems. The book closes with a historical survey paper.
This book attempts to put together the works of a wide range of mathematical scientists. It consists of the proceedings of the Seventh Conference on "Nonlinear Analysis and Applications" including papers that were delivered as invited talks and research reports.
This book contains expanded versions of the talks given at the conference held in honour of professor Ky Fan in California in 1985, as well as papers on nonlinear and convex analysis as contributions to Ky Fan. It also includes a list of publications by Ky Fan.
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
This volume contains versions of invited addresses and communications for the First Chilean Symposium of Mathematics, revealing the results of the mathematical advances in areas such as stochastic analysis, solutions of differential equations, and differential synthetic geometry and probability.
This book contains papers on algebra, functional analysis, and general topology, with a strong interaction with set theoretic axioms and involvement with category theory, presented in the special session on Rings of Continuous Functions held in 1982 in Cincinnati, Ohio.
The solitaire game "The Tower of Hanoi" was invented in the 19th century by the French number theorist Edouard Lucas. The book presents its mathematical theory and offers a survey of the historical development from predecessors up to recent research. In addition to long-standing myths, it provides a detailed overview of the essential mathematical facts with complete proofs, and also includes unpublished material, e.g., on some captivating integer sequences. The main objects of research today are the so-called Hanoi graphs and the related Sierpinski graphs. Acknowledging the great popularity of the topic in computer science, algorithms, together with their correctness proofs, form an essential part of the book. In view of the most important practical applications, namely in physics, network theory and cognitive (neuro)psychology, the book also addresses other structures related to the Tower of Hanoi and its variants. The updated second edition includes, for the first time in English, the breakthrough reached with the solution of the "The Reve's Puzzle" in 2014. This is a special case of the famed Frame-Stewart conjecture which is still open after more than 75 years. Enriched with elaborate illustrations, connections to other puzzles and challenges for the reader in the form of (solved) exercises as well as problems for further exploration, this book is enjoyable reading for students, educators, game enthusiasts and researchers alike. Excerpts from reviews of the first edition: "The book is an unusual, but very welcome, form of mathematical writing: recreational mathematics taken seriously and serious mathematics treated historically. I don't hesitate to recommend this book to students, professional research mathematicians, teachers, and to readers of popular mathematics who enjoy more technical expository detail." Chris Sangwin, The Mathematical Intelligencer 37(4) (2015) 87f. "The book demonstrates that the Tower of Hanoi has a very rich mathematical structure, and as soon as we tweak the parameters we surprisingly quickly find ourselves in the realm of open problems." Laszlo Kozma, ACM SIGACT News 45(3) (2014) 34ff. "Each time I open the book I discover a renewed interest in the Tower of Hanoi. I am sure that this will be the case for all readers." Jean-Paul Allouche, Newsletter of the European Mathematical Society 93 (2014) 56.
Fractal structures or geometries currently play a key role in all models for natural and industrial processes that exhibit the formation of rough surfaces and interfaces. Computer simulations, analytical theories and experiments have led to significant advances in modeling these phenomena across wild media. Many problems coming from engineering, physics or biology are characterized by both the presence of different temporal and spatial scales and the presence of contacts among different components through (irregular) interfaces that often connect media with different characteristics. This work is devoted to collecting new results on fractal applications in engineering from both theoretical and numerical perspectives. The book is addressed to researchers in the field.
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
This book contains papers on complex analysis, function spaces, harmonic analysis, and operators, presented at the International seminar on Functional Analysis, Holomorphy, and Approximation Theory held in 1979. It is addressed to mathematicians and advanced graduate students in mathematics.
This book presents four survey articles on different topics in mathematical analysis that are closely linked to concepts and applications in physics. Specifically, it discusses global aspects of elliptic PDEs, Berezin-Toeplitz quantization, the stability of solitary waves, and sub-Riemannian geometry. The contributions are based on lectures given by distinguished experts at a summer school in Goettingen. The authors explain fundamental concepts and ideas and present them clearly. Starting from basic notions, these course notes take the reader to the point of current research, highlighting new challenges and addressing unsolved problems at the interface between mathematics and physics. All contributions are of interest to researchers in the respective fields, but they are also accessible to graduate students.
This book contains papers presented at the Chicago Conference on Harmonic Analysis in 1981. The papers are compiled under topics, namely trigonometric series, singular integrals and pseudodifferential operators, hardy spaces, differentiation theory, and partial differential equations.
This book is an introduction to the subject and is devoted to standard material on linear functional analysis, and presents some ergodic theorems for classes of operators containing the quasi-compact operators. It discusses various classes of operators connected with the numerical range.
The Second Course in Statistics is an increasingly important offering since more students are arriving at college having taken AP Statistics in high school. Mendenhall/Sincich's A Second Course in Statistics is the perfect book for courses that build on the knowledge students gain in AP Statistics, or the freshman Introductory Statistics course. A Second Course in Statistics: Regression Analysis, Seventh Edition, focuses on building linear statistical models and developing skills for implementing regression analysis in real situations. This text offers applications for engineering, sociology, psychology, science, and business. The authors use real data and scenarios extracted from news articles, journals, and actual consulting problems to show how to apply the concepts. In addition, seven case studies, now located throughout the text after applicable chapters, invite students to focus on specific problems, and are suitable for class discussion.
This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel-Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone-spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. The book should be useful for mathematicians, numerical analysts, computer scientists and engineers.
Introduces Novel Applications for Solving Neutron Transport Equations While deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous ways. Since fractional calculus represents a reactor more closely than classical integer order calculus, Fractional Calculus with Applications for Nuclear Reactor Dynamics focuses on the application of fractional calculus to describe the physical behavior of nuclear reactors. It applies fractional calculus to incorporate the mathematical methods used to analyze the diffusion theory model of neutron transport and explains the role of neutron transport in reactor theory. The author discusses fractional calculus and the numerical solution for fractional neutron point kinetic equation (FNPKE), introduces the technique for efficient and accurate numerical computation for FNPKE with different values of reactivity, and analyzes the fractional neutron point kinetic (FNPK) model for the dynamic behavior of neutron motion. The book begins with an overview of nuclear reactors, explains how nuclear energy is extracted from reactors, and explores the behavior of neutron density using reactivity functions. It also demonstrates the applicability of the Haar wavelet method and introduces the neutron diffusion concept to aid readers in understanding the complex behavior of average neutron motion. This text: Applies the effective analytical and numerical methods to obtain the solution for the NDE Determines the numerical solution for one-group delayed neutron FNPKE by the explicit finite difference method Provides the numerical solution for classical as well as fractional neutron point kinetic equations Proposes the Haar wavelet operational method (HWOM) to obtain the numerical approximate solution of the neutron point kinetic equation, and more Fractional Calculus with Applications for Nuclear Reactor Dynamics thoroughly and systematically presents the concepts of fractional calculus and emphasizes the relevance of its application to the nuclear reactor.
Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis provides researchers and graduate students with a thorough introduction to the theory of nonlinear partial differential equations (PDEs) with a variable exponent, particularly those of elliptic type. The book presents the most important variational methods for elliptic PDEs described by nonhomogeneous differential operators and containing one or more power-type nonlinearities with a variable exponent. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear elliptic equations as well as their applications to various processes arising in the applied sciences. The analysis developed in the book is based on the notion of a generalized or weak solution. This approach leads not only to the fundamental results of existence and multiplicity of weak solutions but also to several qualitative properties, including spectral analysis, bifurcation, and asymptotic analysis. The book examines the equations from different points of view while using the calculus of variations as the unifying theme. Readers will see how all of these diverse topics are connected to other important parts of mathematics, including topology, differential geometry, mathematical physics, and potential theory.
This book includes information on elementary general topology, the Cauchy Integral Theorem and concepts of homology and homotopy in their application to the Cauchy theory. It is intended for an introductory course in complex analysis at the first-year graduate and advanced undergraduate level.
This text on measure theory with applications to partial differential equations covers general measure theory, Lebesgue spaces of real-valued and vector-valued functions, different notions of measurability for the latter, weak convergence of functions and measures, Radon and Young measures, capacity. A comprehensive discussion of applications to quasilinear parabolic and hyperbolic problems is provided. |
You may like...
The Great Power Competition Volume 1…
Adib Farhadi, Anthony J. Masys
Hardcover
R3,688
Discovery Miles 36 880
Sapiens - A Brief History Of Humankind
Yuval Noah Harari
Paperback
(4)
|