Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book covers the application of algebraic inequalities for reliability improvement and for uncertainty and risk reduction. It equips readers with powerful domain-independent methods for reducing risk based on algebraic inequalities and demonstrates the significant benefits derived from the application for risk and uncertainty reduction. Algebraic inequalities: * Provide a powerful reliability improvement, risk and uncertainty reduction method that transcends engineering and can be applied in various domains of human activity * Present an effective tool for dealing with deep uncertainty related to key reliability-critical parameters of systems and processes * Permit meaningful interpretations which link abstract inequalities with the real world * Offer a tool for determining tight bounds for the variation of risk-critical parameters and complying the design with these bounds to avoid failure * Allow optimising designs and processes by minimising the deviation of critical output parameters from their specified values and maximising their performance This book is primarily for engineering professionals and academic researchers in virtually all existing engineering disciplines.
This text offers a selection of papers on singularity theory presented at the Sixth Workshop on Real and Complex Singularities held at ICMC-USP, Brazil. It should help students and specialists to understand results that illustrate the connections between singularity theory and related fields. The authors discuss irreducible plane curve singularities, openness and multitransversality, the distribution Afs and the real asymptotic spectrum, deformations of boundary singularities and non-crystallographic coxeter groups, transversal Whitney topology and singularities of Haefliger foliations, the topology of hypersurface singularities, polar multiplicities and equisingularity of map germs from C3 to C4, and topological invariants of stable maps from a surface to the plane from a global viewpoint.
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics together. By improving readers' knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader's skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book's web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.
SINGLE VARIABLE CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition, provides you with the strongest foundation for a STEM future. James Stewart's Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy and their careful refinements retain Stewart's clarity of exposition and make the 9th edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
The chapters are split into sections, which, in turn, are split into subsections enumerated by two numbers: the first stands for the number of the section while the second for the number ofthe subsection itself. The same numeration is used for all kinds of statements and formulas. If we refer to statements or formulas in other chapters, we use triple numeration where the first number stands for the chapter and the other two have the same sense. The results presented in this book were discussed on the seminars at the Institute of Mathematics of Ukrainian Academy ofSciences, at the Steklov Mathematical Institute of the Academy of Sciences of the USSR, at Moscow and Tbilisi State Universities. I am deeply grateful to the heads of these seminars Professors V. K. Dzyadyk, N. P. Kor- neichuk, S. B. Stechkin, P. L. U1yanov, and L. V. Zhizhiashvili as well as to the mem- bers ofthese seminars that took an active part in the discussions. In TRODUCTIon It is well known for many years that every 21t -periodic summable function f(x) can be associated in a one-to-one manner with its Fourier series (1. 1) Slfl where I It = - f f(t)cosktdt 1t -It and I It - f f(t)sinktdt. 1t -It Therefore, if for approximation of a given function f(*), it is necessary to construct a sequence ofpolynomials Pn (.
This volume contains a selection of papers on the topics of Clifford analysis and wavelets and multiscale analysis, the latter being understood in a very wide sense. The theory of wavelets is mathematically rich and has many practical applications. Most of the articles have been written on invitation and they provide a unique collection of material, particularly relating to Clifford analysis and the theory of wavelets.
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.
George Andrews is one of the most influential figures in number theory and combinatorics. In the theory of partitions and q-hypergeometric series and in the study of Ramanujan's work, he is the unquestioned leader. To suitably honor him during his 70th birthday year, an International Conference on Combinatory Analysis was held at The Pennsylvania State University during December 5-7, 2008. Three issues of the Ramanujan Journal comprising Volume 23 were published in 2010 as the refereed proceedings of that conference. The Ramanujan Journal was proud to bring out that volume honoring one of its Founding Editors. In view of the great interest that the mathematical community has in the influential work of Andrews, it was decided to republish Volume 23 of The Ramanujan Journal in this book form, so that the refereed proceedings are more readily available for those who do not subscribe to the journal but wish to possess this volume. As a fitting tribute to George Andrews, many speakers from the conference contributed research papers to this volume which deals with a broad range of areas that signify the research interests of George Andrews. In reproducing Volume 23 of The Ramanujan Journal in this book form, we have included two papers-one by Hei-Chi Chan and Shaun Cooper, and another by Ole Warnaar-which were intended for Volume 23 of The Ramanujan Journal, but appeared in other issues. The enormous productivity of George Andrews remains unabated in spite of the passage of time. His immensely fertile mind continues to pour forth seminal ideas year after year. He has two research papers in this volume. May his eternal youthfulness and his magnificent research output continue to inspire and influence researchers in the years ahead.
We have classified the articles presented here in two Sections according to their general content. In Part I we have included papers which deal with statistical mechanics, math ematical aspects of dynamical systems and sthochastic effects in nonequilibrium systems. Part II is devoted mainly to instabilities and self-organization in extended nonequilibrium systems. The study of partial differential equations by numerical and analytic methods plays a great role here and many works are related to this subject. Most recent developments in this fascinating and rapidly growing area are discussed. PART I STATISTICAL MECHANICS AND RELATED TOPICS NONEQUILIBRIUM POTENTIALS FOR PERIOD DOUBLING R. Graham and A. Hamm Fachbereich Physik, Universitiit Gesamthochschule Essen D4300 Essen 1 Germany ABSTRACT. In this lecture we consider the influence of weak stochastic perturbations on period doubling using nonequilibrium potentials, a concept which is explained in section 1 and formulated for the case of maps in section 2. In section 3 nonequilibrium potentials are considered for the family of quadratic maps (a) at the Feigenbaum 'attractor' with Gaussian noise, (b) for more general non Gaussian noise, and (c) for the case of a strange repeller. Our discussion will be informal. A more detailed account of this and related material can be found in our papers [1-3] and in the reviews [4, 5], where further references to related work are also given. 1.
This classic is an ideal introduction for students into the methodology and thinking of higher mathematics. It covers material not usually taught in the more technically-oriented introductory classes and will give students a well-rounded foundation for future studies.
This book introduces the class of dynamical systems called semiflows, which includes systems defined or modeled by certain types of differential evolution equations (DEEs). It focuses on the basic results of the theory of dynamical systems that can be extended naturally and applied to study the asymptotic behavior of the solutions of DEEs. The authors concentrate on three types of absorbing sets: attractors, exponential attractors, and inertial manifolds. They present the fundamental properties of these sets, and then proceed to show the existence of some of these sets for a number of dynamical systems generated by well-known physical models. In particular, they consider in full detail two particular PDEEs: a semilinear version of the heat equation and a corresponding version of the dissipative wave equation. These examples illustrate the most important features of the theory of semiflows and provide a sort of template that can be applied to the analysis of other models. The material builds in a careful, gradual progression, developing the background needed by newcomers to the field, and culminating in a more detailed presentation of the main topics than found in most sources. The authors' approach to and treatment of the subject builds the foundation for more advanced references and research on global attractors, exponential attractors, and inertial manifolds.
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Loewner theory. He then presents Schiffer's variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of -convex functions, and numerical estimates of the coefficient problem. The book goes on to summarize orthogonal polynomials, explore the de Branges theorem, and address current and emerging developments since the de Branges theorem.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Hyperbolic partial di?erential equations describe phenomena of material or wave transport in the applied sciences. Despite of considerable progress in the past decades,the mathematical theory still faces fundamental questions concerningthe in?uenceofnonlinearitiesormultiple characteristicsofthe hyperbolicoperatorsor geometric properties of the domain in which the evolution process is considered. The current volume is dedicated to modern topics of the theory of hyperbolic equations such as evolution equations - multiple characteristics - propagation phenomena - global existence - in?uence of nonlinearities. It is addressed both to specialists and to beginners in these ?elds. The c- tributions are to a large extent self-contained. The ?rst contribution is written by Piero D'Ancona and Vladimir Georgiev. Piero D'Ancona graduated in 1982 from Scuola Normale Superiore of Pisa. Since 1997he isfull professorat the Universityof Rome1. Vladimir Georgievgraduated in1981fromtheUniversityofSo?a.Since2000heisfullprofessorattheUniversity of Pisa. The ?rst part of the paper treats the existence of low regularity solutions to the local Cauchy problem associated with wave maps. This introductory part f- lows the classical approach developed by Bourgain, Klainerman, Machedon which yields local well-posedness results for supercritical regularity of the initial data. The nonuniqueness results are establishedbytheauthors under the assumption that the regularity of the initial data is subcritical. The approach is based on the use of self-similar solutions. The third part treats the ill-posedness results of the Cauchy problem for the critical Sobolev regularity. The approach is based on the e?ective application of the properties of a special family of solutions associated with geodesics on the target manifold.
Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published before but have influenced the field for more than two decades. Other chapters contain fresh, original work and bring readers to the current frontier of research. The title reflects the fruitful interplay between diverse mathematical fields bound together by the common theme of complex dynamics, including hyperbolic geometry, number theory, group theory, combinatorics, general dynamics, and many more. At the same time, the title alludes to the spirit of mathematical friendship among the researchers in this area. This book is a tribute to John Hubbard, one of the most inspiring pioneers in the field of complex dynamics.
A Complete Treatment of Current Research Topics in Fourier Transforms and Sinusoids Sinusoids: Theory and Technological Applications explains how sinusoids and Fourier transforms are used in a variety of application areas, including signal processing, GPS, optics, x-ray crystallography, radioastronomy, poetry and music as sound waves, and the medical sciences. With more than 200 illustrations, the book discusses electromagnetic force and sychrotron radiation comprising all kinds of waves, including gamma rays, x-rays, UV rays, visible light rays, infrared, microwaves, and radio waves. It also covers topics of common interest, such as quasars, pulsars, the Big Bang theory, Olbers' paradox, black holes, Mars mission, and SETI. The book begins by describing sinusoids-which are periodic sine or cosine functions-using well-known examples from wave theory, including traveling and standing waves, continuous musical rhythms, and the human liver. It next discusses the Fourier series and transform in both continuous and discrete cases and analyzes the Dirichlet kernel and Gibbs phenomenon. The author shows how invertibility and periodicity of Fourier transforms are used in the development of signals and filters, addresses the general concept of communication systems, and explains the functioning of a GPS receiver. The author then covers the theory of Fourier optics, synchrotron light and x-ray diffraction, the mathematics of radioastronomy, and mathematical structures in poetry and music. The book concludes with a focus on tomography, exploring different types of procedures and modern advances. The appendices make the book as self-contained as possible.
This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.
Summarizes information scattered in the technical literature on a subject too new to be included in most textbooks, but which is of interest to statisticians, and those who use statistics in science and education, at an advanced undergraduate or higher level. Overviews recent research on constructin
A remarkable interplay exists between the fields of elliptic functions and orthogonal polynomials. In the first monograph to explore their connections, Elliptic Polynomials combines these two areas of study, leading to an interesting development of some basic aspects of each. It presents new material about various classes of polynomials and about the odd Jacobi elliptic functions and their inverses. The term elliptic polynomials refers to the polynomials generated by odd elliptic integrals and elliptic functions. In studying these, the authors consider such things as orthogonality and the construction of weight functions and measures, finding structure constants and interesting inequalities, and deriving useful formulas and evaluations. Although some of the material may be familiar, it establishes a new mathematical field that intersects with classical subjects at many points. Its wealth of information on important properties of polynomials and clear, accessible presentation make Elliptic Polynomials valuable to those in real and complex analysis, number theory, and combinatorics, and will undoubtedly generate further research.
Among the theoretical methods for solving many problems of applied mathematics, physics, and technology, asymptotic methods often provide results that lead to obtaining more effective algorithms of numerical evaluation. Presenting the mathematical methods of perturbation theory, Introduction to Asymptotic Methods reviews the most important methods of singular perturbations within the scope of application of differential equations. The authors take a challenging and original approach based on the integrated mathematical-analytical treatment of various objects taken from interdisciplinary fields of mechanics, physics, and applied mathematics. This new hybrid approach will lead to results that cannot be obtained by standard theories in the field. Emphasizing fundamental elements of the mathematical modeling process, the book provides comprehensive coverage of asymptotic approaches, regular and singular perturbations, one-dimensional non-stationary non-linear waves, Pade approximations, oscillators with negative Duffing type stiffness, and differential equations with discontinuous nonlinearities. The book also offers a method of construction for canonical variables transformation in parametric form along with a number of examples and applications. The book is applications oriented and features results and literature citations that have not been seen in the Western Scientific Community. The authors emphasize the dynamics of the development of perturbation methods and present the development of ideas associated with this wide field of research.
This text provides an introduction to basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas: for instance, the existence, uniqueness, and smoothness theorems for differential equations and the flow of a vector field; the basic theory of vector bundles including the existence of tubular neighborhoods for a submanifold; the calculus of differential forms; basic notions of symplectic manifolds, including the canonical 2-form; sprays and covariant derivatives for Riemannian and pseudo-Riemannian manifolds; applications to the exponential map, including the Cartan-Hadamard theorem and the first basic theorem of calculus of variations. Although the book grew out of the author's earlier book "Differential and Riemannian Manifolds", the focus has now changed from the general theory of manifolds to general differential geometry, and includes new chapters on Jacobi lifts, tensorial splitting of the double tangent bundle, curvature and the variation formula, a generalization of the Cartan-Hadamard theorem, the semiparallelogram law of Bruhat-Tits and its equivalence with seminegative curvature and the exponential map distance increasing property, a major example of seminegative curvature (the space of positive definite symmetric real matrices), automorphisms and symmetries, and immersions and submersions. These are all covered for infinite-dimensional manifolds, modeled on Banach and Hilbert Spaces, at no cost in complications, and some gain in the elegance of the proofs. In the finite-dimensional case, differential forms of top degree are discussed, leading to Stokes' theorem (even for manifolds with singular boundary), and several of its applications to the differential or Riemannian case. Basic formulas concerning the Laplacian are given, exhibiting several of its features in immersions and submersions.
Extending and generalizing the results of rational equations, Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures focuses on the boundedness nature of solutions, the global stability of equilibrium points, the periodic character of solutions, and the convergence to periodic solutions, including their periodic trichotomies. The book also provides numerous thought-provoking open problems and conjectures on the boundedness character, global stability, and periodic behavior of solutions of rational difference equations. After introducing several basic definitions and general results, the authors examine 135 special cases of rational difference equations that have only bounded solutions and the equations that have unbounded solutions in some range of their parameters. They then explore the seven known nonlinear periodic trichotomies of third order rational difference equations. The main part of the book presents the known results of each of the 225 special cases of third order rational difference equations. In addition, the appendices supply tables that feature important information on these cases as well as on the boundedness character of all fourth order rational difference equations. A Framework for Future Research The theory and techniques developed in this book to understand the dynamics of rational difference equations will be useful in analyzing the equations in any mathematical model that involves difference equations. Moreover, the stimulating conjectures will promote future investigations in this fascinating, yet surprisingly little known area of research.
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations.
Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established. |
You may like...
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,831
Discovery Miles 28 310
Equations of Motion for Incompressible…
Tujin Kim, Daomin Cao
Hardcover
R3,564
Discovery Miles 35 640
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Advances in Fluid Dynamics with emphasis…
Santiago Hernandez, Peter Vorobieff
Hardcover
R2,659
Discovery Miles 26 590
|