![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book deals with the learning behavior of boundedly rational agents in economic systems. In particular, the modeling of learning populations by genetic algorithms is studied in detail. After an extensive review and discussion of the existing literature in the first part, a mathematical analysis of the dynamic properties of genetic algorithm learning in the general framework of systems with a state dependent fitness function is provided. It is shown that co-evolutionary economic models typically fall into this class and the usefulness of the analytical results derived is illustrated in several game theoretic and microeconomic models. The mathematical analysis is complemented by extensive simulation analyses. The last part of the book demonstrates how the obtained theory may be used to design the algorithm such that the learning of equilibria of the economic system is facilitated.
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Summability Theory and Its Applications explains various aspects of summability and demonstrates its applications in a rigorous and coherent manner. The content can readily serve as a reference or as a useful series of lecture notes on the subject. This substantially revised new edition includes brand new material across several chapters as well as several corrections, including: the addition of the domain of Cesaro matrix C(m) of order m in the classical sequence spaces to Chapter 4; and introducing the domain of four-dimensional binomial matrix in the spaces of bounded, convergent in the Pringsheim's sense, both convergent in the Pringsheim's sense and bounded, and regularly convergent double sequences, in Chapter 7. Features Investigates different types of summable spaces and computes their dual Suitable for graduate students and researchers with a (special) interest in spaces of single and double sequences, matrix transformations and domains of triangle matrices Can serve as a reference or as supplementary reading in a computational physics course, or as a key text for special Analysis seminars.
In his Retiring Presidential address, delivered before the Annual Meeting of The American Mathematical Society on December, 1948, the late Professor Einar Hille spoke on his recent results on the Lie theory of semigroups of linear transformations, . . * "So far only commutative operators have been considered and the product law . . . is the simplest possible. The non-commutative case has resisted numerous attacks in the past and it is only a few months ago that any headway was made with this problem. I shall have the pleasure of outlining the new theory here; it is a blend of the classical theory of Lie groups with the recent theory of one-parameter semigroups. " The list of references in the subsequent publication of Hille's address (Bull. Amer. Math *. Soc. 56 (1950)) includes pioneering papers of I. E. Segal, I. M. Gelfand, and K. Yosida. In the following three decades the subject grew tremendously in vitality, incorporating a number of different fields of mathematical analysis. Early papers of V. Bargmann, I. E. Segal, L. G~ding, Harish-Chandra, I. M. Singer, R. Langlands, B. Konstant, and E. Nelson developed the theoretical basis for later work in a variety of different applications: Mathematical physics, astronomy, partial differential equations, operator algebras, dynamical systems, geometry, and, most recently, stochastic filtering theory. As it turned out, of course, the Lie groups, rather than the semigroups, provided the focus of attention.
The second edition of this book deals, as the first, with the foundations of classical physics from the 'symplectic' point of view, and of quantum mechanics from the 'metaplectic' point of view. We have revised and augmented the topics studied in the first edition in the light of new results, and added several new sections. The Bohmian interpretation of quantum mechanics is discussed in detail. Phase space quantization is achieved using the 'principle of the symplectic camel', which is a deep topological property of Hamiltonian flows. We introduce the notion of 'quantum blob', which can be viewed as the fundamental phase space unit. The mathematical tools developed in this book are the theory of the symplectic and metaplectic group, the Maslov index in a rigorous form, and the Leray index of a pair of Lagrangian planes. The concept of the 'metatron' is introduced, in connection with the Bohmian theory of motion. The short-time behavior of the propagator is studied and applied to the quantum Zeno effect.
This collection covers all papers and partial talks given by Prof Weiyue Ding, who was a member of the Chinese Academy of Sciences. Prof Weiyue Ding devoted his academic career to the research in the field of ordinary differential equations and geometric analysis, e.g. Poincare-Birkhoff fixed point theorems, blow-up analysis for heat flow of harmonic maps.
Introductory Mathematical Analysis for Quantitative Finance is a textbook designed to enable students with little knowledge of mathematical analysis to fully engage with modern quantitative finance. A basic understanding of dimensional Calculus and Linear Algebra is assumed. The exposition of the topics is as concise as possible, since the chapters are intended to represent a preliminary contact with the mathematical concepts used in Quantitative Finance. The aim is that this book can be used as a basis for an intensive one-semester course. Features: Written with applications in mind, and maintaining mathematical rigor. Suitable for undergraduate or master's level students with an Economics or Management background. Complemented with various solved examples and exercises, to support the understanding of the subject.
This book provides a primary resource in basic fixed-point theorems due to Banach, Brouwer, Schauder and Tarski and their applications. Key topics covered include Sharkovsky's theorem on periodic points, Thron's results on the convergence of certain real iterates, Shield's common fixed theorem for a commuting family of analytic functions and Bergweiler's existence theorem on fixed points of the composition of certain meromorphic functions with transcendental entire functions. Generalizations of Tarski's theorem by Merrifield and Stein and Abian's proof of the equivalence of Bourbaki-Zermelo fixed-point theorem and the Axiom of Choice are described in the setting of posets. A detailed treatment of Ward's theory of partially ordered topological spaces culminates in Sherrer fixed-point theorem. It elaborates Manka's proof of the fixed-point property of arcwise connected hereditarily unicoherent continua, based on the connection he observed between set theory and fixed-point theory via a certain partial order. Contraction principle is provided with two proofs: one due to Palais and the other due to Barranga. Applications of the contraction principle include the proofs of algebraic Weierstrass preparation theorem, a Cauchy-Kowalevsky theorem for partial differential equations and the central limit theorem. It also provides a proof of the converse of the contraction principle due to Jachymski, a proof of fixed point theorem for continuous generalized contractions, a proof of Browder-Gohde-Kirk fixed point theorem, a proof of Stalling's generalization of Brouwer's theorem, examine Caristi's fixed point theorem, and highlights Kakutani's theorems on common fixed points and their applications.
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\epsilon \leq c_0\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \rightarrow \infty $. For times $t \gtrsim \mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ""2.5 dimensional'' streamwise-independent solutions referred to as streaks.
'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
Architecture of Mathematics describes the logical structure of Mathematics from its foundations to its real-world applications. It describes the many interweaving relationships between different areas of mathematics and its practical applications, and as such provides unique reading for professional mathematicians and nonmathematicians alike. This book can be a very important resource both for the teaching of mathematics and as a means to outline the research links between different subjects within and beyond the subject. Features All notions and properties are introduced logically and sequentially, to help the reader gradually build understanding. Focusses on illustrative examples that explain the meaning of mathematical objects and their properties. Suitable as a supplementary resource for teaching undergraduate mathematics, and as an aid to interdisciplinary research. Forming the reader's understanding of Mathematics as a unified science, the book helps to increase his general mathematical culture.
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics together. By improving readers' knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader's skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book's web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.
For 3-semester or 4-quarter courses covering single variable and multivariable calculus, taken by students of mathematics, engineering, natural sciences, or economics. University Calculus: Early Transcendentals helps students generalise and apply the key ideas of calculus through clear and precise explanations, thoughtfully chosen examples, meticulously crafted figures, and superior exercise sets. This text offers the right mix of basic, conceptual, and challenging exercises, along with meaningful applications. In the 4th SI Edition, new co-authors Chris Heil (Georgia Institute of Technology) and Przemyslaw Bogacki (Old Dominion University) partner with author Joel Hass to preserve the text's time-tested features while revisiting every word and figure with today's students in mind.
Fractional calculus is used to model many real-life situations from science and engineering. The book includes different topics associated with such equations and their relevance and significance in various scientific areas of study and research. In this book readers will find several important and useful methods and techniques for solving various types of fractional-order models in science and engineering. The book should be useful for graduate students, PhD students, researchers and educators interested in mathematical modelling, physical sciences, engineering sciences, applied mathematical sciences, applied sciences, and so on. This Handbook: Provides reliable methods for solving fractional-order models in science and engineering. Contains efficient numerical methods and algorithms for engineering-related equations. Contains comparison of various methods for accuracy and validity. Demonstrates the applicability of fractional calculus in science and engineering. Examines qualitative as well as quantitative properties of solutions of various types of science- and engineering-related equations. Readers will find this book to be useful and valuable in increasing and updating their knowledge in this field and will be it will be helpful for engineers, mathematicians, scientist and researchers working on various real-life problems.
This book combines theory, applications, and numerical methods, and covers each of these fields with the same weight. In order to make the book accessible to mathematicians, physicists, and engineers alike, the author has made it as self-contained as possible, requiring only a solid foundation in differential and integral calculus. The functional analysis which is necessary for an adequate treatment of the theory and the numerical solution of integral equations is developed within the book itself. Problems are included at the end of each chapter. For this third edition in order to make the introduction to the basic functional analytic tools more complete the Hahn Banach extension theorem and the Banach open mapping theorem are now included in the text. The treatment of boundary value problems in potential theory has been extended by a more complete discussion of integral equations of the first kind in the classical Holder space setting and of both integral equations of the first and second kind in the contemporary Sobolev space setting. In the numerical solution part of the book, the author included a new collocation method for two-dimensional hypersingular boundary integral equations and a collocation method for the three-dimensional Lippmann-Schwinger equation. The final chapter of the book on inverse boundary value problems for the Laplace equation has been largely rewritten with special attention to the trilogy of decomposition, iterative and sampling methods Reviews of earlier editions: "This book is an excellent introductory text for students, scientists, and engineers who want to learn the basic theory of linear integral equations and their numerical solution." (Math. Reviews, 2000) "This is a good introductory text book on linear integral equations. It contains almost all the topics necessary for a student. The presentation of the subject matter is lucid, clear and in the proper modern framework without being too abstract." (ZbMath, 1999)"
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.
In this article we shall use two special classes of reproducing kernel Hilbert spaces (which originate in the work of de Branges [dB) and de Branges-Rovnyak [dBRl), respectively) to solve matrix versions of a number of classical interpolation problems. Enroute we shall reinterpret de Branges' characterization of the first of these spaces, when it is finite dimensional, in terms of matrix equations of the Liapunov and Stein type and shall subsequently draw some general conclusions on rational m x m matrix valued functions which are "J unitary" a.e. on either the circle or the line. We shall also make some connections with the notation of displacement rank which has been introduced and extensively studied by Kailath and a number of his colleagues as well as the one used by Heinig and Rost [HR). The first of the two classes of spaces alluded to above is distinguished by a reproducing kernel of the special form K (>.) = J - U(>')JU(w)* (Ll) w Pw(>') , in which J is a constant m x m signature matrix and U is an m x m J inner matrix valued function over ~+, where ~+ is equal to either the open unit disc ID or the open upper half plane (1)+ and Pw(>') is defined in the table below.
The Second Course in Statistics is an increasingly important offering since more students are arriving at college having taken AP Statistics in high school. Mendenhall/Sincich's A Second Course in Statistics is the perfect book for courses that build on the knowledge students gain in AP Statistics, or the freshman Introductory Statistics course. A Second Course in Statistics: Regression Analysis, Seventh Edition, focuses on building linear statistical models and developing skills for implementing regression analysis in real situations. This text offers applications for engineering, sociology, psychology, science, and business. The authors use real data and scenarios extracted from news articles, journals, and actual consulting problems to show how to apply the concepts. In addition, seven case studies, now located throughout the text after applicable chapters, invite students to focus on specific problems, and are suitable for class discussion.
This book is an introduction to the theory of calculus in the style of inquiry-based learning. The text guides students through the process of making mathematical ideas rigorous, from investigations and problems to definitions and proofs. The format allows for various levels of rigour as negotiated between instructor and students, and the text can be of use in a theoretically oriented calculus course or an analysis course that develops rigor gradually. Material on topology (e.g. of higher dimensional Euclidean spaces) and discrete dynamical systems can be used as excursions within a study of analysis or as a more central component of a course. The themes of bisection, iteration, and nested intervals form a common thread throughout the text. The book is intended for students who have studied some calculus and want to gain a deeper understanding of the subject through an inquiry-based approach.
This book provides a comprehensive study of how attractors behave under perturbations for both autonomous and non-autonomous problems. Furthermore, the forward asymptotics of non-autonomous dynamical systems is presented here for the first time in a unified manner. When modelling real world phenomena imprecisions are unavoidable. On the other hand, it is paramount that mathematical models reflect the modelled phenomenon, in spite of unimportant neglectable influences discounted by simplifications, small errors introduced by empirical laws or measurements, among others. The authors deal with this issue by investigating the permanence of dynamical structures and continuity properties of the attractor. This is done in both the autonomous (time independent) and non-autonomous (time dependent) framework in four distinct levels of approximation: the upper semicontinuity, lower semicontinuity, topological structural stability and geometrical structural stability. This book is aimed at graduate students and researchers interested in dissipative dynamical systems and stability theory, and requires only a basic background in metric spaces, functional analysis and, for the applications, techniques of ordinary and partial differential equations.
Bessel and Mittag-Leffler functions are prominent within mathematical and scientific fields due to increasing interest in non-conventional models within applied mathematics. Since the analytical solutions of many differential and integral equations of arbitrary order can be written as series of special functions of fractional calculus, they are now unavoidable tools for handling various mathematical models of integer or fractional order. From Bessel to Multi-Index Mittag-Leffler Functions analyzes this through the study of enumerable families of different classes of special functions.Enumerable families are considered and the convergence of series is investigated. Providing a unified approach to the classical power series, analogues of the classical results for the power series are obtained, and the conclusion is that each of the considered series has a similar convergence behavior to a power series. Also studied are various properties of the Bessel and Mittag-Leffler functions and their generalizations, including estimations, asymptotic formulae, fractional differentiation and integration operators.
William Kingdon Clifford published the paper defining his "geometric algebras" in 1878, the year before his death. Clifford algebra is a generalisation to n-dimensional space of quaternions, which Hamilton used to represent scalars and vectors in real three-space: it is also a development of Grassmann's algebra, incorporating in the fundamental relations inner products defined in terms of the metric of the space. It is a strange fact that the Gibbs Heaviside vector techniques came to dominate in scientific and technical literature, while quaternions and Clifford algebras, the true associative algebras of inner-product spaces, were regarded for nearly a century simply as interesting mathematical curiosities. During this period, Pauli, Dirac and Majorana used the algebras which bear their names to describe properties of elementary particles, their spin in particular. It seems likely that none of these eminent mathematical physicists realised that they were using Clifford algebras. A few research workers such as Fueter realised the power of this algebraic scheme, but the subject only began to be appreciated more widely after the publication of Chevalley's book, 'The Algebraic Theory of Spinors' in 1954, and of Marcel Riesz' Maryland Lectures in 1959. Some of the contributors to this volume, Georges Deschamps, Erik Folke Bolinder, Albert Crumeyrolle and David Hestenes were working in this field around that time, and in their turn have persuaded others of the importance of the subject." |
![]() ![]() You may like...
Water Pollution Control - A Guide to the…
Richard Helmer, Ivanildo Hespanhol
Paperback
R4,043
Discovery Miles 40 430
Rewilding Africa - Restoring The…
Grant Fowlds, Graham Spence
Paperback
![]()
|