![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This fairly self-contained work embraces a broad range of topics in analysis at the graduate level, requiring only a sound knowledge of calculus and the functions of one variable. A key feature of this lively yet rigorous and systematic exposition is the historical accounts of ideas and methods pertaining to the relevant topics. Most interesting and useful are the connections developed between analysis and other mathematical disciplines, in this case, numerical analysis and probability theory. The text is divided into two parts: The first examines the systems of real and complex numbers and deals with the notion of sequences in this context. After the presentation of natural numbers as a subset of the reals, elements of combinatorics and a discussion of the mathematical notion of the infinite are introduced. The second part is dedicated to discrete processes starting with a study of the processes of infinite summation both in the case of numerical series and of power series.
This book is about regularity properties of functional equations. In the second part of his fifth problem, Hilbert asked, concerning functional equations - in how far are the assertions which we can make in the case of differentiable functions true under proper modifications without this assumption? This book contains, in a unified fashion, most of the modern results about regularity of non-composite functional equations with several variables. These results show that 'weak' regularity properties, say measurability or continuity, of solutions imply that they are in C infinity], and hence the equation can be reduced to a differential equation. A long introduction highlights the basic ideas for beginners. Several applications are also included.
The book serves as a primary textbook of partial differential equations (PDEs), with due attention to their importance to various physical and engineering phenomena. The book focuses on maintaining a balance between the mathematical expressions used and the significance they hold in the context of some physical problem. The book has wider outreach as it covers topics relevant to many different applications of ordinary differential equations (ODEs), PDEs, Fourier series, integral transforms, and applications. It also discusses applications of analytical and geometric methods to solve some fundamental PDE models of physical phenomena such as transport of mass, momentum, and energy. As far as possible, historical notes are added for most important developments in science and engineering. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.
Yoshihiro Shibata has made many significant contributions to the area of mathematical fluid mechanics over the course of his illustrious career, including landmark work on the Navier-Stokes equations. The papers collected here - on the occasion of his 70th birthday - are written by world-renowned researchers and celebrate his decades of outstanding achievements.
The easy way to conquer calculus Calculus is hard--no doubt about it--and students often need help understanding or retaining the key concepts covered in class. Calculus Workbook For Dummies serves up the concept review and practice problems with an easy-to-follow, practical approach. Plus, you'll get free access to a quiz for every chapter online. With a wide variety of problems on everything covered in calculus class, you'll find multiple examples of limits, vectors, continuity, differentiation, integration, curve-sketching, conic sections, natural logarithms, and infinite series. Plus, you'll get hundreds of practice opportunities with detailed solutions that will help you master the math that is critical for scoring your highest in calculus. Review key concepts Take hundreds of practice problems Get access to free chapter quizzes online Use as a classroom supplement or with a tutor Get ready to quickly and easily increase your confidence and improve your skills in calculus.
This concise textbook introduces the reader to advanced mathematical aspects of general relativity, covering topics like Penrose diagrams, causality theory, singularity theorems, the Cauchy problem for the Einstein equations, the positive mass theorem, and the laws of black hole thermodynamics. It emerged from lecture notes originally conceived for a one-semester course in Mathematical Relativity which has been taught at the Instituto Superior Tecnico (University of Lisbon, Portugal) since 2010 to Masters and Doctorate students in Mathematics and Physics. Mostly self-contained, and mathematically rigorous, this book can be appealing to graduate students in Mathematics or Physics seeking specialization in general relativity, geometry or partial differential equations. Prerequisites include proficiency in differential geometry and the basic principles of relativity. Readers who are familiar with special relativity and have taken a course either in Riemannian geometry (for students of Mathematics) or in general relativity (for those in Physics) can benefit from this book.
Operator theory, system theory, scattering theory, and the
theory of analytic functions of one complex variable are deeply
related topics, and the relationships between these theories are
well understood. When one leaves the setting of one operator and
considers several operators, the situation is much more involved.
There is no longer a single underlying theory, but rather different
theories, some of them loosely connected and some not connected at
all. These various theories, which one could call "multidimensional
operator theory," are topics of active and intensive
research.
This is the third volume of the Handbook of Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I and II, such as, for instance, Zariski's equisingularity, the interplay between isolated complex surface singularities and 3-manifold theory, stratified Morse theory, constructible sheaves, the topology of the non-critical levels of holomorphic functions, and intersection cohomology. Other chapters bring in new subjects, such as the Thom-Mather theory for maps, characteristic classes for singular varieties, mixed Hodge structures, residues in complex analytic varieties, nearby and vanishing cycles, and more. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
The great number of varied approaches to hydrodynamic stability theory appear as a bulk of results whose classification and discussion are well-known in the literature. Several books deal with one aspect of this theory alone (e.g. the linear case, the influence of temperature and magnetic field, large classes of globally stable fluid motions etc.). The aim of this book is to provide a complete mathe matical treatment of hydrodynamic stability theory by combining the early results of engineers and applied mathematicians with the recent achievements of pure mathematicians. In order to ensure a more operational frame to this theory I have briefly outlined the main results concerning the stability of the simplest types of flow. I have attempted several definitions of the stability of fluid flows with due consideration of the connections between them. On the other hand, as the large number of initial and boundary value problems in hydrodynamic stability theory requires appropriate treat ments, most of this book is devoted to the main concepts and methods used in hydrodynamic stability theory. Open problems are expressed in both mathematical and physical terms."
This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.
This book presents results about certain summability methods, such as the Abel method, the Norlund method, the Weighted mean method, the Euler method and the Natarajan method, which have not appeared in many standard books. It proves a few results on the Cauchy multiplication of certain summable series and some product theorems. It also proves a number of Steinhaus type theorems. In addition, it introduces a new definition of convergence of a double sequence and double series and proves the Silverman-Toeplitz theorem for four-dimensional infinite matrices, as well as Schur's and Steinhaus theorems for four-dimensional infinite matrices. The Norlund method, the Weighted mean method and the Natarajan method for double sequences are also discussed in the context of the new definition. Divided into six chapters, the book supplements the material already discussed in G.H.Hardy's Divergent Series. It appeals to young researchers and experienced mathematicians who wish to explore new areas in Summability Theory..
In this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book's results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries.
This book convenes a collection of carefully selected problems in mathematical analysis, crafted to achieve maximum synergy between analytic geometry and algebra and favoring mathematical creativity in contrast to mere repetitive techniques. With eight chapters, this work guides the student through the basic principles of the subject, with a level of complexity that requires good use of imagination. In this work, all the fundamental concepts seen in a first-year Calculus course are covered. Problems touch on topics like inequalities, elementary point-set topology, limits of real-valued functions, differentiation, classical theorems of differential calculus (Rolle, Lagrange, Cauchy, and l'Hospital), graphs of functions, and Riemann integrals and antiderivatives. Every chapter starts with a theoretical background, in which relevant definitions and theorems are provided; then, related problems are presented. Formalism is kept at a minimum, and solutions can be found at the end of each chapter. Instructors and students of Mathematical Analysis, Calculus and Advanced Calculus aimed at first-year undergraduates in Mathematics, Physics and Engineering courses can greatly benefit from this book, which can also serve as a rich supplement to any traditional textbook on these subjects as well.
This fourth edition of selecta of my work on the stability of matter contains recent work on two topics that continue to fascinate me: Quantum electrodynamics (QED) and the Bose gas. Three papers have been added to Part VII on QED. As I mentioned in the preface to the third edition, there must be a way to formulate a non-perturbative QED, presumably with an ultraviolet cutoff, that correctly describes low energy physics, i.e., ordinary matter and its interaction with the electromagnetic field. The new paper VII.5, which quantizes the results in V.9, shows that the elementary no-pair version of relativistic QED (using the Dirac operator) is unstable when many-body effects are taken into account. Stability can be restored, however, if the Dirac operator with the field, instead of the bare Dirac operator, is used to define an electron. Thus, the notion of a bare electron without its self-field is physically questionable."
For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941."
The Workshop on Hyperbolic Conservation Laws and Related Analysis with Applications at the International Centre for Mathematical Sciences (Edinburgh, UK) held in Edinburgh, September 2011, produced this fine collection of original research and survey articles. Many leading mathematicians attended the event and submitted their contributions for this volume.This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws, related analysisand applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results on liquid crystals, conservation laws with discontinuous flux functions, and applications to sedimentation. Also included are articles on recent advances in the Euler equations and the Navier Stokes Fourier Poisson system, in addition to new results on collective phenomena described by the Cucker Smale model. The present volume is addressed toresearchers and graduate students interested in partial differential equations and related analysis with applications.
This monograph explores the design of controllers that suppress oscillations and instabilities in congested traffic flow using PDE backstepping methods. The first part of the text is concerned with basic backstepping control of freeway traffic using the Aw-Rascle-Zhang (ARZ) second-order PDE model. It begins by illustrating a basic control problem - suppressing traffic with stop-and-go oscillations downstream of ramp metering - before turning to the more challenging case for traffic upstream of ramp metering. The authors demonstrate how to design state observers for the purpose of stabilization using output-feedback control. Experimental traffic data are then used to calibrate the ARZ model and validate the boundary observer design. Because large uncertainties may arise in traffic models, adaptive control and reinforcement learning methods are also explored in detail. Part II then extends the conventional ARZ model utilized until this point in order to address more complex traffic conditions: multi-lane traffic, multi-class traffic, networks of freeway segments, and driver use of routing apps. The final chapters demonstrate the use of the Lighthill-Whitham-Richards (LWR) first-order PDE model to regulate congestion in traffic flows and to optimize flow through a bottleneck. In order to make the text self-contained, an introduction to the PDE backstepping method for systems of coupled first-order hyperbolic PDEs is included. Traffic Congestion Control by PDE Backstepping is ideal for control theorists working on control of systems modeled by PDEs and for traffic engineers and applied scientists working on unsteady traffic flows. It will also be a valuable resource for researchers interested in boundary control of coupled systems of first-order hyperbolic PDEs.
The functional analytic properties of Weyl transforms as bounded linear operators on $ LA2A1/4(ABbb RA1/4AnA1/4) $ are studied in terms of the symbols of the transforms. The boundedness, the compactness, the spectrum and the functional calculus of the Weyl transform are proved in detail. New results and techniques on the boundedness and compactness of the Weyl transforms in terms of the symbols in $ LArA1/4(ABbb RA1/4A2nA1/4) $ and in terms of the Wigner transforms of Hermite functions are given. The roles of the Heisenberg group and the symplectic group in the study of the structure of the Weyl transform are explicated, and the connections of the Weyl transform with quantization are highlighted throughout the book. Localization operators, first studied as filters in signal analysis, are shown to be Weyl transforms with symbols expressed in terms of the admissible wavelets of the localization operators. The results and methods in this book should be of interest to graduate students and mathematicians working in Fourier analysis, operator theory, pseudo- differential operators and mathematical physics. Background materials are given in adequate detail to enable a graduate student to proceed rapidly from the very basics to the frontier of research in an area of operator theory.
The major thrust of this book is the analysis of pointwise behavior of Sobolev functions of integer order and BV functions (functions whose partial derivatives are measures with finite total variation). The development of Sobolev functions includes an analysis of their continuity properties in terms of Lebesgue points, approximate continuity, and fine continuity as well as a discussion of their higher order regularity properties in terms of Lp-derivatives. This provides the foundation for further results such as a strong approximation theorem and the comparison of Lp and distributional derivatives. Also included is a treatment of Sobolev-PoincarA(c) type inequalities which unifies virtually all inequalities of this type. Although the techniques required for the discussion of BV functions are completely different from those required for Sobolev functions, there are similarities between their developments such as a unifying treatment of PoincarA(c)-type inequalities for BV functions. This book is intended for graduate students and researchers whose interests may include aspects of approximation theory, the calculus of variations, partial differential equations, potential theory and related areas. The only prerequisite is a standard graduate course in real analysis since almost all of the material is accessible through real variable techniques.
Finslerian Laplacians have arisen from the demands of modelling the modern world. However, the roots of the Laplacian concept can be traced back to the sixteenth century. Its phylogeny and history are presented in the Prologue of this volume. The text proper begins with a brief introduction to stochastically derived Finslerian Laplacians, facilitated by applications in ecology, epidemiology and evolutionary biology. The mathematical ideas are then fully presented in section II, with generalizations to Lagrange geometry following in section III. With section IV, the focus abruptly shifts to the local mean-value approach to Finslerian Laplacians and a Hodge-de Rham theory is developed for the representation on real cohomology classes by harmonic forms on the base manifold. Similar results are proved in sections II and IV, each from different perspectives. Modern topics treated include nonlinear Laplacians, Bochner and Lichnerowicz vanishing theorems, WeitzenbAck formulas, and Finslerian spinors and Dirac operators. The tools developed in this book will find uses in several areas of physics and engineering, but especially in the mechanics of inhomogeneous media, e.g. Cofferat continua. Audience: This text will be of use to workers in stochastic processes, differential geometry, nonlinear analysis, epidemiology, ecology and evolution, as well as physics of the solid state and continua.
The book constitutes an introduction to stochastic calculus, stochastic differential equations and related topics such as Malliavin calculus. On the other hand it focuses on the techniques of stochastic integration and calculus via regularization initiated by the authors. The definitions relies on a smoothing procedure of the integrator process, they generalize the usual Ito and Stratonovich integrals for Brownian motion but the integrator could also not be a semimartingale and the integrand is allowed to be anticipating. The resulting calculus requires a simple formalism: nevertheless it entails pathwise techniques even though it takes into account randomness. It allows connecting different types of pathwise and non pathwise integrals such as Young, fractional, Skorohod integrals, enlargement of filtration and rough paths. The covariation, but also high order variations, play a fundamental role in the calculus via regularization, which can also be applied for irregular integrators. A large class of Gaussian processes, various generalizations of semimartingales such that Dirichlet and weak Dirichlet processes are revisited. Stochastic calculus via regularization has been successfully used in applications, for instance in robust finance and on modeling vortex filaments in turbulence. The book is addressed to PhD students and researchers in stochastic analysis and applications to various fields.
This book explores the origins of mathematical analysis in an accessible, clear, and precise manner. Concepts such as function, continuity, and convergence are presented with a unique historical point of view. In part, this is accomplished by investigating the impact of and connections between famous figures, like Newton, Leibniz, Johann Bernoulli, Euler, and more. Of particular note is the treatment of Karl Weierstrass, whose concept of real numbers has been frequently overlooked until now. By providing such a broad yet detailed survey, this book examines how analysis was formed, how it has changed over time, and how it continues to evolve today. A Brief History of Analysis will appeal to a wide audience of students, instructors, and researchers who are interested in discovering new historical perspectives on otherwise familiar mathematical ideas.
The author believes that a good basic understanding of electronics can be achieved by detailed visual analyses of the actual voltage waveforms present in selected circuits. The voltage waveforms included in this text were photographed using a 35-rrun camera in an attempt to make the book more attractive. This book is intended for the use of students with a variety of backgrounds. For this reason considerable material has been placed in the Appendix for those students who find it useful. The Appendix includes many basic electricity and electronic concepts as well as mathematical derivations that are not vital to the understanding of the circuit being discussed in the text at that time. Also some derivations might be so long that, if included in the text, it could affect the concentration of the student on the circuit being studied. The author has tried to make the book comprehensive enough so that a student could use it as a self-study course, providing one has access to adequate laboratory equipment. |
You may like...
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Preconditioning and the Conjugate…
Josef Malek, Zdenek Strakos
Paperback
R1,250
Discovery Miles 12 500
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Modern Umbral Calculus - An Elementary…
Francesco Aldo Costabile
Hardcover
R3,769
Discovery Miles 37 690
|