![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. The Scandal of Father G. K. Chesterton. 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop."
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
This book gives an up-to-date account of the theory of strongly continuous one-parameter semigroups of linear operators. It includes a systematic discussion of the spectral theory and the long-term behavior of such semigroups. A special feature of the text is an unusually wide range of applications, e.g., to ordinary and partial differential operators, delay and Volterra equations and to control theory, and an emphasis on philosophical motivation and the historical background. The book is written for students, but should also be of value for researchers interested in this field.
Applied Calculus for Business, Economics, and the Social and Life Sciences, Expanded Edition provides a sound, intuitive understanding of the basic concepts students need as they pursue careers in business, economics, and the life and social sciences. Students achieve success using this text as a result of the author's applied and real-world orientation to concepts, problem-solving approach, straight forward and concise writing style, and comprehensive exercise sets. More than 100,000 students worldwide have studied from this text!
This volume corresponds to the invited lectures and advanced research papers presented at the NATD Advanced Study Institute on Nonlinear Stochastic Problems with emphasis on Identification, Signal Processing, Control and Nonlinear Filtering held in Algarve (Portugal), on May 1982. The book is a blend of theoretical issues, algorithmic implementation aspects, and application examples. In many areas of science and engineering, there are problems which are intrinsically nonlinear 3nd stochastic in nature. Clear examples arise in identification and mOdeling, signal processing, nonlinear filtering, stochastic and adaptive conLrol. The meeting was organized because it was felt that there is a need for discussion of the methods and philosophy underlying these different areas, and in order to communicate those approaches that have proven to be effective. As the computational technology progresses, more general approaches to a number of problems which have been treated previously by linearization and perturbation methods become feasible and rewarding.
This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel-Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone-spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. The book should be useful for mathematicians, numerical analysts, computer scientists and engineers.
An Introduction to Nonlinear Analysis: Applications offers an exposition of the main applications of Nonlinear Analysis. Its starting point is a chapter on Nonlinear Operators and Fixed Points, a connecting point and bridge from Nonlinear Analysis theory to its applications. The topics covered include applications to ordinary and partial differential equations, optimization, optimal control, calculus of variations and mathematical economics. This book is an excellent springboard for anyone wishing to conduct advanced research or work on a postgraduate text. Many exercises and their solutions complement the presentation. The text is a companion to An Introduction to Nonlinear Analysis: Theory by the same authors.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
This textbook gives a comprehensive introduction to stochastic processes and calculus in the fields of finance and economics, more specifically mathematical finance and time series econometrics. Over the past decades stochastic calculus and processes have gained great importance, because they play a decisive role in the modeling of financial markets and as a basis for modern time series econometrics. Mathematical theory is applied to solve stochastic differential equations and to derive limiting results for statistical inference on nonstationary processes. This introduction is elementary and rigorous at the same time. On the one hand it gives a basic and illustrative presentation of the relevant topics without using many technical derivations. On the other hand many of the procedures are presented at a technically advanced level: for a thorough understanding, they are to be proven. In order to meet both requirements jointly, the present book is equipped with a lot of challenging problems at the end of each chapter as well as with the corresponding detailed solutions. Thus the virtual text - augmented with more than 60 basic examples and 40 illustrative figures - is rather easy to read while a part of the technical arguments is transferred to the exercise problems and their solutions.
New Edition: Fractional Calculus: An Introduction for Physicists (3rd Edition)Fractional calculus is undergoing rapid and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics.This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.
This book is designed for students in engineering, physics and mathematics. The material can be taught from the beginning of the third academic year. It could also be used for self study, given its pedagogical structure and the numerous solved problems which prepare for modem physics and technology. One of the original aspects of this work is the development together of the basic theory of tensors and the foundations of continuum mechanics. Why two books in one? Firstly, Tensor Analysis provides a thorough introduction of intrinsic mathematical entities, called tensors, which is essential for continuum mechanics. This way of proceeding greatly unifies the various subjects. Only some basic knowledge of linear algebra is necessary to start out on the topic of tensors. The essence of the mathematical foundations is introduced in a practical way. Tensor developments are often too abstract, since they are either aimed at algebraists only, or too quickly applied to physicists and engineers. Here a good balance has been found which allows these extremes to be brought closer together. Though the exposition of tensor theory forms a subject in itself, it is viewed not only as an autonomous mathematical discipline, but as a preparation for theories of physics and engineering. More specifically, because this part of the work deals with tensors in general coordinates and not solely in Cartesian coordinates, it will greatly help with many different disciplines such as differential geometry, analytical mechanics, continuum mechanics, special relativity, general relativity, cosmology, electromagnetism, quantum mechanics, etc .."
Harmonic analysis and probability have long enjoyed a mutually beneficial relationship that has been rich and fruitful. This monograph, aimed at researchers and students in these fields, explores several aspects of this relationship. The primary focus of the text is the nontangential maximal function and the area function of a harmonic function and their probabilistic analogues in martingale theory. The text first gives the requisite background material from harmonic analysis and discusses known results concerning the nontangential maximal function and area function, as well as the central and essential role these have played in the development of the field.The book next discusses further refinements of traditional results: among these are sharp good-lambda inequalities and laws of the iterated logarithm involving nontangential maximal functions and area functions. Many applications of these results are given. Throughout, the constant interplay between probability and harmonic analysis is emphasized and explained. The text contains some new and many recent results combined in a coherent presentation.
Basic Real Analysis and Advanced Real Analysis systematically develop the concepts and tools that are vital to every mathematician, whether pure or applied, aspiring or established. These works present a comprehensive treatment with a global view of the subject, emphasizing the connections between real analysis and other branches of mathematics.Basic Real Analysis requires of the reader only familiarity with some linear algebra and real variable theory, the very beginning of group theory, and an acquaintance with proofs. It is suitable as a text in an advanced undergraduate course in real variable theory and in most basic graduate courses in Lebesgue integration and related topics. Because it focuses on what every young mathematician needs to know about real analysis, the book is ideal both as a course text and for self-study, especially for graduate students preparing for qualifying examinations. Its scope and unique approach will appeal to instructors and professors in nearly all areas of pure mathematics, as well as applied mathematicians working in analytic areas such as statistics, mathematical physics, and differential equations. addition to the personal library of every mathematician.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This volume represents a broad survey of current research in the
fields of nonlinear analysis and nonlinear differential equations.
It is dedicated to Djairo G. de Figueiredo on the occasion of his
70th birthday. The collection of 34 research and survey articles
reflects the wide range of interests of Djairo de Figueiredo,
including:
This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.
Kiyosi Ito, the founder of stochastic calculus, is one of the few central figures of the twentieth century mathematics who reshaped the mathematical world. Today stochastic calculus is a central research field with applications in several other mathematical disciplines, for example physics, engineering, biology, economics and finance. The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over the world were invited to present the newest developments within the exciting and fast growing field of stochastic analysis. The present volume combines both papers from the invited speakers and contributions by the presenting lecturers. A special feature is the Memoirs that Kiyoshi Ito wrote for this occasion. These are valuable pages for both young and established researchers in the field.
As its title indicates, this book is intended to serve as a textbook for an introductory course in mathematical analysis. In preliminary form the book has been used in this way at the University of Michigan, Indiana University, and Texas A&M University, and has proved serviceable. In addition to its primary purpose as a textbook for a formal course, however, it is the authors' hope that this book will also prove of value to readers interested in studying mathematical analysis on their own. Indeed, we believe the wealth and variety of examples and exercises will be especially conducive to this end. A word on prerequisites. With what mathematical background might a prospective reader hope to profit from the study of this book? Our con scious intent in writing it was to address the needs of a beginning graduate student in mathematics, or, to put matters slightly differently, a student who has completed an undergraduate program with a mathematics ma jor. On the other hand, the book is very largely self-contained and should therefore be accessible to a lower classman whose interest in mathematical analysis has already been awakened."
In 2008, November 23-28, the workshop of "Classical Problems on Planar Polynomial Vector Fields " was held in the Banff International Research Station, Canada. Called "classical problems", it was concerned with the following: (1) Problems on integrability of planar polynomial vector fields. (2) The problem of the center stated by Poincare for real polynomial differential systems, which asks us to recognize when a planar vector field defined by polynomials of degree at most n possesses a singularity which is a center. (3) Global geometry of specific classes of planar polynomial vector fields. (4) Hilbert's 16th problem. These problems had been posed more than 110 years ago. Therefore, they are called "classical problems" in the studies of the theory of dynamical systems. The qualitative theory and stability theory of differential equations, created by Poincare and Lyapunov at the end of the 19th century, had major developments as two branches of the theory of dynamical systems during the 20th century. As a part of the basic theory of nonlinear science, it is one of the very active areas in the new millennium. This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. The book is intended for graduate students, post-doctors and researchers in dynamical systems. For all engineers who are interested in the theory of dynamical systems, it is also a reasonable reference. It requires a minimum background of a one-year course on nonlinear differential equations.
For a three-semester or four-quarter calculus course covering single variable and multivariable calculus for mathematics, engineering, and science majors. This much anticipated second edition of the most successful new calculus text published in the last two decades retains the best of the first edition while introducing important advances and refinements. Authors Briggs, Cochran, and Gillett build from a foundation of meticulously crafted exercise sets, then draw students into the narrative through writing that reflects the voice of the instructor, examples that are stepped out and thoughtfully annotated, and figures that are designed to teach rather than simply supplement the narrative. The authors appeal to students' geometric intuition to introduce fundamental concepts, laying a foundation for the development that follows. The groundbreaking eBook contains over 650 Interactive Figures that can be manipulated to shed light on key concepts. This text offers a superior teaching and learning experience.Here's how: *A robust MyMathLab(r) course contains more than 7,000 assignable exercises, an eBook with 650 Interactive Figures, and built-in tutorials so students can get help when they need it. *Reflects how students use a textbook-they start with the exercises and flip back for help if they need it. *Organization and presentation of content facilitates learning of key concepts, skills, and applications.
Probably, we are obliged to Science, more than to any other field of the human activity, for the origin of our sense that collective efforts are necessary indeed. F. Joliot-Curie The study of autowave processes is a young science. Its basic concepts and methods are still in the process of formation, and the field of its applications to various domains of natural sciences is expanding continuously. Spectacular examples of various autowave processes are observed experimentally in numerous laboratories of quite different orientations, dealing with investigations in physics, chemistry and biology. It is O1). r opinion, however, that if a history of the discovery of autowaves will he written some day its author should surely mention three fundamental phenomena which were the sources of the domain in view. "Ve mean combustion and phase transition waves, waves in chemical reactors where oxidation-reduction processes take place, and propagation of excitations in nerve fibres. The main tools of the theory of autowave processes are various methods used for investigating nonlinear discrete or distributed oscillating systems, the mathe matical theory of nonlinear parabolic differential equations, and methods of the theory of finite automata. It is noteworthy that the theory of autowave, ., has been greatly contributed to be work of brilliant mathematicians who anticipated the experimental discoveries in their abstract studies. One should mention R. Fishel' (1937), A. N. Kolmogorov, G. 1. Petrovskii, and N. S. Piskunov (1937), N. Wiener and A. Rosenbluth (1946), A. Turing (1952)."
It isn't that they can't see the solution. It is Approach your problems from the right end that they can't see the problem. and begin with the answers. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be com pletely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
These are the proceedings of the international conference on "Nonlinear numerical methods and Rational approximation II" organised by Annie Cuyt at the University of Antwerp (Belgium), 05-11 September 1993. It was held for the third time in Antwerp at the conference center of UIA, after successful meetings in 1979 and 1987 and an almost yearly tradition since the early 70's. The following figures illustrate the growing number of participants and their geographical dissemination. In 1993 the Belgian scientific committee consisted of A. Bultheel (Leuven), A. Cuyt (Antwerp), J. Meinguet (Louvain-Ia-Neuve) and J.-P. Thiran (Namur). The conference focused on the use of rational functions in different fields of Numer ical Analysis. The invited speakers discussed "Orthogonal polynomials" (D. S. Lu binsky), "Rational interpolation" (M. Gutknecht), "Rational approximation" (E. B. Saff), "Pade approximation" (A. Gonchar) and "Continued fractions" (W. B. Jones). In contributed talks multivariate and multidimensional problems, applications and implementations of each main topic were considered. To each of the five main topics a separate conference day was devoted and a separate proceedings chapter compiled accordingly. In this way the proceedings reflect the organisation of the talks at the conference. Nonlinear numerical methods and rational approximation may be a nar row field for the outside world, but it provides a vast playground for the chosen ones. It can fascinate specialists from Moscow to South-Africa, from Boulder in Colorado and from sunny Florida to Zurich in Switzerland." |
![]() ![]() You may like...
Machine Learning for Computer Vision
Roberto Cipolla, Sebastiano Battiato, …
Hardcover
R2,897
Discovery Miles 28 970
3D Point Cloud Analysis - Traditional…
Shan Liu, Min Zhang, …
Hardcover
R3,357
Discovery Miles 33 570
Machine Learning Paradigms…
Aristomenis S Lampropoulos, George A. Tsihrintzis
Hardcover
R3,435
Discovery Miles 34 350
Computer Vision in Sports
Thomas B. Moeslund, Graham Thomas, …
Hardcover
R3,697
Discovery Miles 36 970
Domain Adaptation in Computer Vision…
Hemanth Venkateswara, Sethuraman Panchanathan
Hardcover
R4,371
Discovery Miles 43 710
Advanced Machine Vision Paradigms for…
Tapan K. Gandhi, Siddhartha Bhattacharyya, …
Paperback
R3,207
Discovery Miles 32 070
Machine Learning for Vision-Based Motion…
Liang Wang, Guoying Zhao, …
Hardcover
R4,420
Discovery Miles 44 200
New Developments in the Visualization…
David H. Laidlaw, Anna Vilanova
Hardcover
R4,412
Discovery Miles 44 120
Functional Brain Mapping: Methods and…
Vassiliy Tsytsarev, Vicky Yamamoto, …
Hardcover
R2,881
Discovery Miles 28 810
|