![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This modern introduction to infinitesimal methods is a translation
of the book Metodos Infinitesimais de Analise Matematica by Jose
Sousa Pinto of the University of Aveiro, Portugal and is aimed at
final year or graduate level students with a background in
calculus. Surveying modern reformulations of the infinitesimal
concept with a thoroughly comprehensive exposition of important and
influential hyperreal numbers, the book includes previously
unpublished material on the development of hyperfinite theory of
Schwartz distributions and its application to generalised Fourier
transforms and harmonic analysis. This translation by Roy Hoskins
was also greatly assisted by the comments and constructive
criticism of Professor Victor Neves, of the University of Aveiro.
This volume presents a collection of selected papers by the prominent Brazilian mathematician Djairo G. de Figueiredo, who has made significant contributions in the area of Differential Equations and Analysis. His work has been highly influential as a challenge and inspiration to young mathematicians as well as in development of the general area of analysis in his home country of Brazil. In addition to a large body of research covering a variety of areas including geometry of Banach spaces, monotone operators, nonlinear elliptic problems and variational methods applied to differential equations, de Figueiredo is known for his many monographs and books. Among others, this book offers a sample of the work of Djairo, as he is commonly addressed, advancing the study of superlinear elliptic problems (both scalar and system cases), including questions on critical Sobolev exponents and maximum principles for non-cooperative elliptic systems in Hamiltonian form.
Variational and boundary integral equation techniques are two of the most useful methods for solving time-dependent problems described by systems of equations of the form 2 ? u = Au, 2 't 2 where u = u(x, t) is a vector-valued function, x is a point in a domain inR or 3 R, and A is a linear elliptic di?erential operator. To facilitate a better und- standing of these two types of methods, below we propose to illustrate their mechanisms in action on a speci?c mathematical model rather than in a more impersonal abstract setting. For this purpose, we have chosen the hyperbolic system of partial di?erential equations governing the nonstationary bending of elastic plates with transverse shear deformation. The reason for our choice is twofold. On the one hand, in a certain sense this is a hybrid system, c- sistingofthreeequationsforthreeunknownfunctionsinonlytwoindependent variables, which makes it more unusual and thereby more interesting to the analyst than other systems arising in solid mechanics. On the other hand, this particular plate model has received very little attention compared to the so-called classical one, based on Kirchho? s simplifying hypotheses, although, as acknowledged by practitioners, it represents a substantial re?nement of the latter and therefore needs a rigorous discussion of the existence, uniqueness, and continuous dependence of its solution on the data before any construction of numerical approximation algorithms can be contemplated."
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.
During its 2004 meeting in Warsaw the General Assembly of the International Union of Theoretical and Applied Mechanics (IUTAM) decided to support a proposal of the Georgian National Committee to hold in Tbilisi (Georgia), on April 23-27, 2007, the IUTAM Symposium on the Relation of Shell, Plate, Beam, and 3D Models, dedicated to the Centenary of Ilia Vekua. The sci- ti?c organization was entrusted to an international committee consisting of Philipppe G. Ciarlet (Hong Kong), the late Anatoly Gerasimovich Gorshkov (Russia),JornHansen(Canada),GeorgeV.Jaiani(Georgia,Chairman),Re- hold Kienzler (Germany), Herbert A. Mang (Austria), Paolo Podio-Guidugli (Italy), and Gangan Prathap (India). The main topics to be included in the scienti?c programme were c- sen to be: hierarchical, re?ned mathematical and technical models of shells, plates, and beams; relation of 2D and 1D models to 3D linear, non-linear and physical models; junction problems. The main aim of the symposium was to thoroughly discuss the relations of shell, plate, and beam models to the 3D physicalmodels.Inparticular,peculiaritiesofcuspedshells,plates,andbeams were to be emphasized and special attention paid to junction, multibody and ? uid-elastic shell (plate, beam) interaction problems, and their applications. The expected contributions of the invited participants were anticipated to be theoretical, practical, and numerical in character.
This book contains nine well-organized survey articles by leading researchers in positivity, with a strong emphasis on functional analysis. It provides insight into the structure of classical spaces of continuous functions, f-algebras, and integral operators, but also contains contributions to modern topics like vector measures, operator spaces, ordered tensor products, non-commutative Banach function spaces, and frames. Contributors: B. Banerjee, D.P. Blecher, K. Boulabiar, Q. Bu, G. Buskes, G.P. Curbera, M. Henriksen, A.G. Kusraev, J. Marti-nez, B. de Pagter, W.J. Ricker, A.R. Schep, A. Triki, A.W. Wickstead
This book adresses the needs of both researchers and practitioners. It combines a rigorous overview of the mathematics of financial markets with an insight into the practical application of these models to the risk and portfolio management of interest-rate derivatives. It can also serve as a valuable textbook for graduate and PhD students in mathematics who want to get some knowledge about financial markets. The first part of the book is an exposition of advanced stochastic calculus. It defines the theoretical framework for the pricing and hedging of contingent claims with a special focus on interest-rate markets. The second part covers a selection of short and long-term oriented risk measures as well as their application to the risk management of interest -rate portfolios. Interesting and comprehensive case studies are provided to illustrate the theoretical concepts.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. While the first volume is devoted to
perturbations of the boundary near isolated singular points, this
second volume treats singularities of the boundary in higher
dimensions as well as nonlocal perturbations.
The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. Typical examples are the chemical processes in flow reactors and in the catalytic combustion at surfaces. Further examples are models of star formation including diffusive mass transport, energy radiation and dust formation and the polluting transport in soil and waters. For these complex processes mathematical models are established and numerically simulated. The modeling uses multiscale techniques for nonlinear differential equations while for the numerical simulation and optimization goal-oriented mesh and model adaptivity, multigrid techniques and advanced Newton-type methods are developed combined with parallelization. This modeling and simulation is accompanied by experiments.
This book begins with an introductory chapter summarizing the history of fluid mechanics. It then moves on to the essential mathematics and physics needed to understand and work in fluid mechanics. Analytical treatments are based on the Navier-Stokes equations.
During the past decade model predictive control (MPC), also
referred to as receding horizon control or moving horizon control,
has become the preferred control strategy for quite a number of
industrial processes. There have been many significant advances in
this area over the past years, one of the most important ones being
its extension to nonlinear systems. This book gives an up-to-date
assessment of the current state of the art in the new field of
nonlinear model predictive control (NMPC). The main topic areas
that appear to be of central importance for NMPC are covered,
namely receding horizon control theory, modeling for NMPC,
computational aspects of on-line optimization and application
issues. The book consists of selected papers presented at the
International Symposium on Nonlinear Model Predictive Control -
Assessment and Future Directions, which took place from June 3 to
5, 1998, in Ascona, Switzerland.
This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan's mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmuller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22-26 August 2016. The book is a valuable resource for researchers in real and complex analysis.
The aim of this volume is to present the state of the art in the mathematical analysis of transport and mixing phenomena in fluids and associated problems. It supplements current literature on the subject with a unique blend of contributions that touch upon both theoretical as well as modeling questions and showcase a variety of techniques, from the analysis of partial differential equations, to harmonic analysis, to computational methods. The volume contains the expanded notes from lectures by leading experts in the field at the Summer School "Transport, Fluids, and Mixing" held in Levico Terme, Italy, July 19-24, 2015.
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto 's achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.
The Laplace transform is a wonderful tool for solving ordinary and partial differential equations and has enjoyed much success in this realm. With its success, however, a certain casualness has been bred concerning its application, without much regard for hypotheses and when they are valid. Even proofs of theorems often lack rigor, and dubious mathematical practices are not uncommon in the literature for students. In the present text, I have tried to bring to the subject a certain amount of mathematical correctness and make it accessible to un dergraduates. Th this end, this text addresses a number of issues that are rarely considered. For instance, when we apply the Laplace trans form method to a linear ordinary differential equation with constant coefficients, any(n) + an-lY(n-l) + . . . + aoy = f(t), why is it justified to take the Laplace transform of both sides of the equation (Theorem A. 6)? Or, in many proofs it is required to take the limit inside an integral. This is always fraught with danger, especially with an improper integral, and not always justified. I have given complete details (sometimes in the Appendix) whenever this procedure is required. IX X Preface Furthermore, it is sometimes desirable to take the Laplace trans form of an infinite series term by term. Again it is shown that this cannot always be done, and specific sufficient conditions are established to justify this operation."
For the first time in the mathematical literature this
two-volume work introduces a unified and general approach to the
asymptotic analysis of elliptic boundary value problems in
singularly perturbed domains. This first volume is devoted to
domains whose boundary is smooth in the neighborhood of finitely
many conical points. In particular, the theory encompasses the
important case of domains with small holes. The second volume, on
the other hand, treats perturbations of the boundary in higher
dimensions as well as nonlocal perturbations.
This self-contained work on linear and metric structures focuses on studying continuity and its applications to finite- and infinite-dimensional spaces. The book is divided into three parts. The first part introduces the basic ideas of linear and metric spaces, including the Jordan canonical form of matrices and the spectral theorem for self-adjoint and normal operators. The second part examines the role of general topology in the context of metric spaces and includes the notions of homotopy and degree. The third and final part is a discussion on Banach spaces of continuous functions, Hilbert spaces and the spectral theory of compact operators. Mathematical Analysis: Linear and Metric Structures and Continuity motivates the study of linear and metric structures with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering. Other books recently published by the authors include: Mathematical Analysis: Functions of One Variable, and Mathematical Analysis: Approximation and Discrete Processes. with a strong foundation in modern-day analysis.
This book presents the proceedings of the international conference Analytic Aspects in Convexity, which was held in Rome in October 2016. It offers a collection of selected articles, written by some of the world's leading experts in the field of Convex Geometry, on recent developments in this area: theory of valuations; geometric inequalities; affine geometry; and curvature measures. The book will be of interest to a broad readership, from those involved in Convex Geometry, to those focusing on Functional Analysis, Harmonic Analysis, Differential Geometry, or PDEs. The book is a addressed to PhD students and researchers, interested in Convex Geometry and its links to analysis.
The analysis of Euclidean space is well-developed. The classical Lie groups that act naturally on Euclidean space-the rotations, dilations, and trans lations-have both shaped and guided this development. In particular, the Fourier transform and the theory of translation invariant operators (convolution transforms) have played a central role in this analysis. Much modern work in analysis takes place on a domain in space. In this context the tools, perforce, must be different. No longer can we expect there to be symmetries. Correspondingly, there is no longer any natural way to apply the Fourier transform. Pseudodifferential operators and Fourier integral operators can playa role in solving some of the problems, but other problems require new, more geometric, ideas. At a more basic level, the analysis of a smoothly bounded domain in space requires a great deal of preliminary spadework. Tubular neighbor hoods, the second fundamental form, the notion of "positive reach," and the implicit function theorem are just some of the tools that need to be invoked regularly to set up this analysis. The normal and tangent bundles become part of the language of classical analysis when that analysis is done on a domain. Many of the ideas in partial differential equations-such as Egorov's canonical transformation theorem-become rather natural when viewed in geometric language. Many of the questions that are natural to an analyst-such as extension theorems for various classes of functions-are most naturally formulated using ideas from geometry."
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton-Jacobi equations. The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.
This book is devoted to the broad field of Fourier analysis and its applications to several areas of mathematics, including problems in the theory of pseudo-differential operators, partial differential equations, and time-frequency analysis. It is based on lectures given at the international conference Fourier Analysis and Pseudo-Differential Operators, June 25 30, 2012, at Aalto University, Finland. This collection of 20 refereed articles is based on selected talks and presents the latest advances in the field. The conference was a satellite meeting of the 6th European Congress of Mathematics, which took place in Krakow in July 2012; it was also the 6th meeting in the series Fourier Analysis and Partial Differential Equations. " |
You may like...
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,900
Discovery Miles 39 000
Special Functions Of Fractional…
Trifce Sandev, Alexander Iomin
Hardcover
R2,380
Discovery Miles 23 800
Preconditioning and the Conjugate…
Josef Malek, Zdenek Strakos
Paperback
R1,250
Discovery Miles 12 500
|