![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This seventh volume collects authoritative chapters covering several applications of fractional calculus in in engineering, life, and social sciences, including applications in biology and medicine, mechanics of complex media, economy, and electrical devices.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis," which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savare, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
The focus of this book is on the Schatten-von Neumann properties and the product formulas of localization operators defined in terms of infinite-dimensional and square-integrable representations of locally compact and Hausdorff groups. Wavelet transforms, which are the building blocks of localization operators, are also studied in their own right. Daubechies operators on the Weyl-Heisenberg group, localization operators on the affine group, and wavelet multipliers on the Euclidean space are investigated in detail. The study is carried out in the perspective of pseudo-differential operators, quantization and signal analysis. Although the emphasis is put on locally compact and Hausdorff groups, results in the context of homogeneous spaces are given in order to unify the various localization operators into a single theory. Several new spectral results on pseudo-differential operators in the setting of localization operators are presented for the first time. The book is accessible to graduate students and mathematicians who have a basic knowledge of measure theory and functional analysis and wish to have a fast track to the frontier of research at the interface of pseudo-differential operators, quantization and signal analysis.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This third volume collects authoritative chapters covering several numerical aspects of fractional calculus, including time and space fractional derivatives, finite differences and finite elements, and spectral, meshless, and particle methods.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.
I The fixed point theorems of Brouwer and Schauder.- 1 The fixed point theorem of Brouwer and applications.- 2 The fixed point theorem of Schauder and applications.- II Measures of noncompactness.- 1 The general notion of a measure of noncompactness.- 2 The Kuratowski and Hausdorff measures of noncompactness.- 3 The separation measure of noncompactness.- 4 Measures of noncompactness in Banach sequences spaces.- 5 Theorem of Darbo and Sadovskii and applications.- III Minimal sets for a measure of noncompactness.- 1 o-minimal sets.- 2 Minimalizable measures of noncompactness.- IV Convexity and smoothness.- 1 Strict convexity and smoothness.- 2 k-uniform convexity.- 3 k-uniform smoothness.- V Nearly uniform convexity and nearly uniform smoothness.- 1 Nearly uniformly convex Banach spaces.- 2 Nearly uniformly smooth Banach spaces.- 3 Uniform Opial condition.- VI Fixed points for nonexpansive mappings and normal structure.- 1 Existence of fixed points for nonexpansive mappings: Kirk's theorem.- 2 The coefficient N(X) and its connection with uniform convexity.- 3 The weakly convergent sequence coefficient.- 4 Uniform smoothness, near uniform convexity and normal structure.- 5 Normal structure in direct sum spaces.- 6 Computation of the normal structure coefficients in Lp-spaces.- VII Fixed point theorems in the absence of normal structure.- 1 Goebel-Karlovitz's lemma and Lin's lemma.- 2 The coefficient M(X) and the fixed point property.- VIII Uniformly Lipschitzian mappings.- 1 Lifshitz characteristic and fixed points.- 2 Connections between the Lifshitz characteristic and certain geometric coefficients.- 3 The normal structure coefficient and fixed points.- IX Asymptotically regular mappings.- 1 A fixed point theorem for asymptotically regular mappings.- 2 Connections between the ?-characteristic and some other geometric coefficients.- 3 The weakly convergent sequence coefficient and fixed points.- X Packing rates and o-contractiveness constants.- 1 Comparable measures of noncompactness.- 2 Packing rates of a metric space.- 3 Connections between the packing rates and the normal structure coefficients.- 4 Packing rates in lp-spaces.- 5 Packing rates in Lpspaces.- 6 Packing rates in direct sum spaces.- References.- List of Symbols and Notations.
This book is devoted to recent developments concerning linear operators, covering topics such as the Cauchy problem, Riesz basis, frames, spectral theory and applications to the Gribov operator in Bargmann space. Also, integral and integro-differential equations as well as applications to problems in mathematical physics and mechanics are discussed. Contents Introduction Linear operators Basic notations and results Bases Semi-groups Discrete operator and denseness of the generalized eigenvectors Frames in Hilbert spaces Summability of series -convergence operators -hypercyclic set of linear operators Analytic operators in Bela Szoekefalvi-Nagy's sense Bases of the perturbed operator T( ) Frame of the perturbed operator T( ) Perturbation method for sound radiation by a vibrating plate in a light fluid Applications to mathematical models Reggeon field theory
Multidimensional continued fractions form an area of research within number theory. Recently the topic has been linked to research in dynamical systems, and mathematical physics, which means that some of the results discovered in this area have applications in describing physical systems. This book gives a comprehensive and up to date overview of recent research in the area.
The fascinating world of canonical moments--a unique look at this
practical, powerful statistical and probability tool
This monograph summarizes the recent major achievements in Moebius invariant QK spaces. First introduced by Hasi Wulan and his collaborators, the theory of QK spaces has developed immensely in the last two decades, and the topics covered in this book will be helpful to graduate students and new researchers interested in the field. Featuring a wide range of subjects, including an overview of QK spaces, QK-Teichmuller spaces, K-Carleson measures and analysis of weight functions, this book serves as an important resource for analysts interested in this area of complex analysis. Notes, numerous exercises, and a comprehensive up-to-date bibliography provide an accessible entry to anyone with a standard graduate background in real and complex analysis.
This book gathers the main recent results on positive trigonometric polynomials within a unitary framework. The book has two parts: theory and applications. The theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The applications part is organized as a collection of related problems that use systematically the theoretical results.
This book presents in a detailed and self-contained way a new and important density result in the analysis of fractional partial differential equations, while also covering several fundamental facts about space- and time-fractional equations.
In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
This unique book develops the application of experimental statistical designs and analysis to discrete-event simulation modeling. It takes a practical perspective and orients the reader with examples of the role of simulation in modeling a system. The stages and steps for applying simulation are discussed by focusing on the important role of statistics. Examples are given about how to design an experiment using techniques such as classical designs, group screening, polynomial decomposition, and Taguchi designs. Using the statistical techniques discussed, a sound simulation model can be built and adequately tested before implementation. The book also shows how simulation results can be generalized by discussing in full the growing emphasis on simulation metamodeling. Examples of this approach are presented to show that reliable and simple models could be easily obtained. Furthermore, such models are applied within a decision framework to optimize the system of interest. This expands the power of simulation from being purely descriptive of the system to being a prescriptive model. The reader is exposed to potential problems and how such problems may be harnessed. Although the book discusses statistical techniques, it is written so as to be comprehensible to anyone with a basic background in statistics. The book is a good resource for consultants and simulation practitioners; it can also be used as a textbook for classes in simulation.
The fundamentals of the discipline, now complete with the latest experimental research and techniques Factor analysis is a mathematical tool for examining a wide range of data sets, with applications especially important to the design of experiments (DOE), spectroscopy, chromatography, and chemometrics. Whereas the first two editions concentrated on standardizing the fundamentals of this emerging discipline, the Third Edition of Factor Analysis in Chemistry, the "bible" of factor analysis, proves a comprehensive handbook at a level that is consistent with the research and design of experiments today. With the exception of updates, the introductory chapters remain unchanged. Chapter 6 has been edited to focus on evolutionary methods, including window factor analysis, transmutation, and DECRA. Selections on partial least squares and multimode analysis have been expanded and consolidated into two new chapters, 7 and 8. Some of the latest advances in a wide variety of fields, such as chromatography, NMR, biomedicine, environmental science, food, and fuels, are described in the applications chapters (chapters 9 through 12). Other features of the text include:
Factor Analysis in Chemistry, Third Edition remains the premier reference in its field.
In this monograph we study the problem of construction of asymptotic solutions of equations for functions whose number of arguments tends to infinity as the small parameter tends to zero. Such equations arise in statistical physics and in quantum theory of a large number of fi elds. We consider the problem of renormalization of quantum field theory in the Hamiltonian formalism, which encounters additional difficulties related to the Stuckelberg divergences and the Haag theorem. Asymptotic methods for solving pseudodifferential equations with small parameter multiplying the derivatives, as well as the asymptotic methods developed in the present monograph for solving problems in statistical physics and quantum field theory, can be considered from a unified viewpoint if one introduces the notion of abstract canonical operator. The book can be of interest for researchers - specialists in asymptotic methods, statistical physics, and quantum fi eld theory as well as for graduate and undergraduate students of these specialities.
A number of texts have recently become available which provide good general introductions to p-Adic numbers and p-Adic analysis. However, there is at present a gap between such books and the sophisticated applications in the research literature. The aim of this book is to bridge this gulf by providing a collection of intermediate level articles on various applications of p-Adic techniques throughout mathematics. The idea for producing such a volume was suggested by Oxford University Press in connection with a three day meeting `p-Adic Methods and their Applications' held at Manchester University in September 1989 and which have received financial support from the London Mathematical Society. Some of these articles grew out of talks given at this conference, others were written by invitation especially for this volume. All contributions were refereed with a particular view to their suitability for inclusion in such a book.
An Introduction to Wavelets is the first volume in a new series,
WAVELET ANALYSIS AND ITS APPLICATIONS. This is an introductory
treatise on wavelet analysis, with an emphasis on spline wavelets
and time-frequency analysis. Among the basic topics covered in this
book are time-frequency localization, integral wavelet transforms,
dyadic wavelets, frames, spline-wavelets, orthonormal wavelet
bases, and wavelet packets. In addition, the author presents a
unified treatment of nonorthogonal, semiorthogonal, and orthogonal
wavelets. This monograph is self-contained, the only prerequisite
being a basic knowledge of function theory and real analysis. It is
suitable as a textbook for a beginning course on wavelet analysis
and is directed toward both mathematicians and engineers who wish
to learn about the subject. Specialists may use this volume as a
valuable supplementary reading to the vast literature that has
already emerged in this field.
This book presents the basic concepts of calculus and its relevance to real-world problems, covering the standard topics in their conventional order. By focusing on applications, it allows readers to view mathematics in a practical and relevant setting. Organized into 12 chapters, this book includes numerous interesting, relevant and up-to date applications that are drawn from the fields of business, economics, social and behavioural sciences, life sciences, physical sciences, and other fields of general interest. It also features MATLAB, which is used to solve a number of problems. The book is ideal as a first course in calculus for mathematics and engineering students. It is also useful for students of other sciences who are interested in learning calculus.
Progress in mathematics is based on a thorough understanding of the mathematical objects under consideration, and yet many textbooks and monographs proceed to discuss general statements and assume that the reader can and will provide the mathematical infrastructure of examples and counterexamples. This book makes a deliberate effort to correct this situation: it is a collection of examples. The following table of contents describes its breadth and reveals the underlying motivation--differential geometry--in its many facets: Riemannian, symplectic, K*adahler, hyperK*adahler, as well as complex and quaternionic.
This two-volume work introduces the theory and applications of Schur-convex functions. The second volume mainly focuses on the application of Schur-convex functions in sequences inequalities, integral inequalities, mean value inequalities for two variables, mean value inequalities for multi-variables, and in geometric inequalities. |
You may like...
Late Cainozoic Floras of Iceland - 15…
Thomas Denk, Fridgeir Grimsson, …
Hardcover
R7,844
Discovery Miles 78 440
Natural and Engineered Clay Barriers…
Christophe Tournassat, Carl I Steefel, …
Hardcover
R3,114
Discovery Miles 31 140
Geothermics in Basin Analysis
Andrea Foerster, Daniel F. Merriam
Hardcover
R2,855
Discovery Miles 28 550
Microwave Remote Sensing of Land…
Nicolas Baghdadi, Mehrez Zribi
Hardcover
R2,682
Discovery Miles 26 820
|