![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This book presents a novel approach to umbral calculus, which uses only elementary linear algebra (matrix calculus) based on the observation that there is an isomorphism between Sheffer polynomials and Riordan matrices, and that Sheffer polynomials can be expressed in terms of determinants. Additionally, applications to linear interpolation and operator approximation theory are presented in many settings related to various families of polynomials.
The maturity of BEM over the last few decades has resulted in a substantial number of industrial applications of the method; this demonstrates its accuracy, robustness and ease of use. The range of applications still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. Theoretical developments and new formulations have been reported over the last few decades, helping to expand the range of boundary elements and other mesh reduction methods (BEM/MRM) applications as well as the type of modelled materials in response to the requirements of contemporary industrial and professional environments. As design, analysis and manufacture become more integrated, the chances are that software users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily within the aforementioned integrated process. The papers included were presented at the 44th International Conference on Boundary Elements and other Mesh Reduction Methods and report advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences.
The book presents the recent achievements on bifurcation studies of
nonlinear dynamical systems. The contributing authors of the book
are all distinguished researchers in this interesting subject area.
The first two chapters deal with the fundamental theoretical issues
of bifurcation analysis in smooth and non-smooth dynamical systems.
The cell mapping methods are presented for global bifurcations in
stochastic and deterministic, nonlinear dynamical systems in the
third chapter. The fourth chapter studies bifurcations and chaos in
time-varying, parametrically excited nonlinear dynamical systems.
The fifth chapter presents bifurcation analyses of modal
interactions in distributed, nonlinear, dynamical systems of
circular thin von Karman plates. The theories, methods and results
presented in this book are of great interest to scientists and
engineers in a wide range of disciplines. This book can be adopted
as references for mathematicians, scientists, engineers and
graduate students conducting research in nonlinear dynamical
systems.
This book is devoted to an important branch of the dynamical systems theory: the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems.
The Keller-Segel model for chemotaxis is a prototype of nonlocal systems describing concentration phenomena in physics and biology. While the two-dimensional theory is by now quite complete, the questions of global-in-time solvability and blowup characterization are largely open in higher dimensions. In this book, global-in-time solutions are constructed under (nearly) optimal assumptions on initial data and rigorous blowup criteria are derived.
This volume contains the proceedings of the NATO Advanced Research Workshop on Numerical Integration that took place in Bergen, Norway, in June 1991. It includes papers for all invited talks and a selection of contributed talks. The papers are organized into four parts: numerical integration rules, numerical integration error analysis, numerical integration applications and numerical integration algorithms and software; many papers are relevant to more than one category. The workshop studied the state of the art in numerical integration, both single and multidimensional. The book contains a number of survey papers by experts on themes such as numerical solution of integral equations, cubature formulae construction, handling singularities in finite elements, statistical applications, lattice rules, error estimates, error bounds and software.
The book addresses many important new developments in the field.
All the topics covered are of great interest to the readers because
such inequalities have become a major tool in the analysis of
various branches of mathematics.
This monograph explores the motion of incompressible fluids by presenting and incorporating various boundary conditions possible for real phenomena. The authors' approach carefully walks readers through the development of fluid equations at the cutting edge of research, and the applications of a variety of boundary conditions to real-world problems. Special attention is paid to the equivalence between partial differential equations with a mixture of various boundary conditions and their corresponding variational problems, especially variational inequalities with one unknown. A self-contained approach is maintained throughout by first covering introductory topics, and then moving on to mixtures of boundary conditions, a thorough outline of the Navier-Stokes equations, an analysis of both the steady and non-steady Boussinesq system, and more. Equations of Motion for Incompressible Viscous Fluids is ideal for postgraduate students and researchers in the fields of fluid equations, numerical analysis, and mathematical modelling.
The last few years have witnessed a surge in the development and usage of discretization methods supporting general meshes in geoscience applications. The need for general polyhedral meshes in this context can arise in several situations, including the modelling of petroleum reservoirs and basins, CO2 and nuclear storage sites, etc. In the above and other situations, classical discretization methods are either not viable or require ad hoc modifications that add to the implementation complexity. Discretization methods able to operate on polyhedral meshes and possibly delivering arbitrary-order approximations constitute in this context a veritable technological jump. The goal of this monograph is to establish a state-of-the-art reference on polyhedral methods for geoscience applications by gathering contributions from top-level research groups working on this topic. This book is addressed to graduate students and researchers wishing to deepen their knowledge of advanced numerical methods with a focus on geoscience applications, as well as practitioners of the field.
This monograph has arisen out of a number of attempts spanning almost five decades to understand how one might examine the evolution of densities in systems whose dynamics are described by differential delay equations. Though the authors have no definitive solution to the problem, they offer this contribution in an attempt to define the problem as they see it, and to sketch out several obvious attempts that have been suggested to solve the problem and which seem to have failed. They hope that by being available to the general mathematical community, they will inspire others to consider-and hopefully solve-the problem. Serious attempts have been made by all of the authors over the years and they have made reference to these where appropriate.
This book provides a detailed study of nonlinear partial differential equations satisfying certain nonstandard growth conditions which simultaneously extend polynomial, inhomogeneous and fully anisotropic growth. The common property of the many different kinds of equations considered is that the growth conditions of the highest order operators lead to a formulation of the equations in Musielak-Orlicz spaces. This high level of generality, understood as full anisotropy and inhomogeneity, requires new proof concepts and a generalization of the formalism, calling for an extended functional analytic framework. This theory is established in the first part of the book, which serves as an introduction to the subject, but is also an important ingredient of the whole story. The second part uses these theoretical tools for various types of PDEs, including abstract and parabolic equations but also PDEs arising from fluid and solid mechanics. For connoisseurs, there is a short chapter on homogenization of elliptic PDEs. The book will be of interest to researchers working in PDEs and in functional analysis.
This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This eighth volume collects authoritative chapters covering several applications of fractional calculus in engineering, life and social sciences, including applications in signal and image analysis, and chaos.
This book includes over 500 most challenging exercises and problems in calculus. Topical problems and exercises are discussed on set theory, numbers, functions, limits and continuity, derivative, integral calculus, Rolle's theorem, mean value theorem, optimization problems, sequences and series. All the seven chapters recall important definitions, theorems and concepts, making this book immensely valuable to undergraduate students of engineering, mathematics, statistics, computer science and basic sciences.
Originating from the 42nd conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM), the research presented in this book consist of high quality papers that report on advances in techniques that reduce or eliminate the type of meshes associated with such methods as finite elements or finite differences. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. As design, analysis and manufacture become more integrated the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The papers in this volume help to expand the range of applications as well as the type of materials in response to industrial and professional requirements. Some of the topics include: Hybrid foundations; Meshless and mesh reduction methods; Structural mechanics; Solid mechanics; Heat and mass transfer; Electrical engineering and electromagnetics; Fluid flow modelling; Damage mechanics and fracture; Dynamics and vibrations analysis.
This proceedings volume covers research in key areas of applied mathematical analysis, and gathers works presented at the international conference "Concord-90," in honor of the 90th birthday of Professor Constantin Corduneanu (1928-2018). The event - which Professor Corduneanu was able to attend - was held at Ural Federal University in Ekaterinburg, Russia, on July 26-28, 2018. Professor Corduneanu's research in mathematical analysis spanned nearly seven decades and explored a range of important issues in the field, including studies of global existence, stability problems, and oscillation theory, with special emphasis on various classes of nonlinear equations. He published over two hundred articles and several books, including "Almost Periodic Oscillations and Waves" (Springer, 2009). In this volume the reader will find selected, peer-reviewed articles from seven fields of research - Differential Equations, Optimal Control and Stabilization; Stochastic Methods; Topology and Functions Approximation; Mathematical Biology and Bioinformatics; Mathematical Modeling in Mining; Mathematical Modeling in Economics; and Computer Science and Image Processing - which honor and reflect Professor Corduneanu's legacy in the fields of oscillation, stability and control theory.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This seventh volume collects authoritative chapters covering several applications of fractional calculus in in engineering, life, and social sciences, including applications in biology and medicine, mechanics of complex media, economy, and electrical devices.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This sixth volume collects authoritative chapters covering several applications of fractional calculus in control theory, including fractional controllers, design methods and toolboxes, and a large number of engineering applications of control.
The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.
The book provides the reader with the different types of functional
equations that s/he can find in practice, showing, step by step,
how they can be solved.
Dugopolski'sPrecalculus: Functions and Graphs, Fourth Edition gives students the essential strategies they need to make the transition to calculus. The author's emphasis on problem solving and critical thinking is enhanced by the addition of 900 exercises including new vocabulary and cumulative review problems. Students will find carefully placed learning aids and review tools to help them learn the math without getting distracted. Along the way, students see how the algebra connects to their future calculus courses, with tools like Foreshadowing Calculus and Concepts of Calculus.
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This third volume collects authoritative chapters covering several numerical aspects of fractional calculus, including time and space fractional derivatives, finite differences and finite elements, and spectral, meshless, and particle methods.
Calculus with Applications, 11th Edition by Lial, Greenwell, and Ritchey, is our most applied text to date, making the math relevant and accessible for students of business, life science, and social sciences. Current applications, many using real data, are incorporated in numerous forms throughout the book, preparing students for success in their professional careers. With this edition, students will find new ways to help them learn the material, such as Warm-Up Exercises and added "help text" within examples.
For freshman/sophomore-level courses treating calculus of both one and several variables. Clear and Concise! Varberg focuses on the most critical concepts freeing you to teach the way you want! This popular calculus text remains the shortest mainstream calculus book available - yet covers all the material needed by, and at an appropriate level for, students in engineering, science, and mathematics. It's conciseness and clarity helps students focus on, and understand, critical concepts in calculus without them getting bogged down and lost in excessive and unnecessary detail. It is accurate, without being excessively rigorous, up-to-date without being faddish. The authors make effective use of computing technology, graphics, and applications. Ideal for instructors who want a no-nonsense, concisely written treatment. |
![]() ![]() You may like...
The Ethics of Artificial Intelligence…
Francesca Mazzi, Luciano Floridi
Hardcover
R3,565
Discovery Miles 35 650
SAS for Mixed Models - Introduction and…
Walter W. Stroup, George A. Milliken, …
Hardcover
R3,302
Discovery Miles 33 020
Theories of School Psychology - Critical…
Kristy K. Kelly, S. Andrew Garbacz, …
Paperback
R1,330
Discovery Miles 13 300
Evolution, Games, and Economic Behaviour
Fernando Vega-Redondo
Hardcover
R5,426
Discovery Miles 54 260
Bullying in Youth Sports Training - New…
Miguel Nery, Carlos Neto, …
Paperback
R1,139
Discovery Miles 11 390
Combinatorial Game Theory - A Special…
Richard J. Nowakowski, Bruce M. Landman, …
Hardcover
R6,100
Discovery Miles 61 000
|