![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
These are the proceedings of the international conference on "Nonlinear numerical methods and Rational approximation II" organised by Annie Cuyt at the University of Antwerp (Belgium), 05-11 September 1993. It was held for the third time in Antwerp at the conference center of UIA, after successful meetings in 1979 and 1987 and an almost yearly tradition since the early 70's. The following figures illustrate the growing number of participants and their geographical dissemination. In 1993 the Belgian scientific committee consisted of A. Bultheel (Leuven), A. Cuyt (Antwerp), J. Meinguet (Louvain-Ia-Neuve) and J.-P. Thiran (Namur). The conference focused on the use of rational functions in different fields of Numer ical Analysis. The invited speakers discussed "Orthogonal polynomials" (D. S. Lu binsky), "Rational interpolation" (M. Gutknecht), "Rational approximation" (E. B. Saff), "Pade approximation" (A. Gonchar) and "Continued fractions" (W. B. Jones). In contributed talks multivariate and multidimensional problems, applications and implementations of each main topic were considered. To each of the five main topics a separate conference day was devoted and a separate proceedings chapter compiled accordingly. In this way the proceedings reflect the organisation of the talks at the conference. Nonlinear numerical methods and rational approximation may be a nar row field for the outside world, but it provides a vast playground for the chosen ones. It can fascinate specialists from Moscow to South-Africa, from Boulder in Colorado and from sunny Florida to Zurich in Switzerland."
A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.
These proceedings report on the conference "Math Everywhere," celebrating the 60th birthday of the mathematician Vincenzo Capasso. The conference promoted ideas Capasso has pursued and shared the open atmosphere he is known for. Topic sections include: Deterministic and Stochastic Systems. Mathematical Problems in Biology, Medicine and Ecology. Mathematical Problems in Industry and Economics. The broad spectrum of contributions to this volume demonstrates the truth of its title: Math is Everywhere, indeed.
The main concern of this book is the distribution of zeros of polynomials that are orthogonal on the unit circle with respect to an indefinite weighted scalar or inner product. The first theorem of this type, proved by M. G. Krein, was a far-reaching generalization of G. Szeg 's result for the positive definite case. A continuous analogue of that theorem was proved by Krein and H. Langer. These results, as well as many generalizations and extensions, are thoroughly treated in this book. A unifying theme is the general problem of orthogonalization with invertible squares in modules over C*-algebras. Particular modules that are considered in detail include modules of matrices, matrix polynomials, matrix-valued functions, linear operators, and others. One of the central features of this book is the interplay between orthogonal polynomials and their generalizations on the one hand, and operator theory, especially the theory of Toeplitz marices and operators, and Fredholm and Wiener-Hopf operators, on the other hand. The book is of interest to both engineers and specialists in analysis.
Schur analysis originates with a 1917 paper by Schur where he associated to a function analytic and contractive in the open unit disk a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients. In signal processing, they are often called reflection coefficients. Under the word "Schur analysis" one encounters a variety of problems related to Schur functions such as interpolation problems, moment problems, study of the relationships between the Schur coefficients and the properties of the function, study of underlying operators and others. This volume is almost entirely dedicated to the analysis of Schur and CarathA(c)odory functions and to the solutions of problems for these classes.
The purpose of this book is to present some new methods in the treatment of partial differential equations. Some of these methods lead to effective numerical algorithms when combined with the digital computer. Also presented is a useful chapter on Green's functions which generalizes, after an introduction, to new methods of obtaining Green's functions for partial differential operators. Finally some very new material is presented on solving partial differential equations by Adomian's decomposition methodology. This method can yield realistic computable solutions for linear or non linear cases even for strong nonlinearities, and also for deterministic or stochastic cases - again even if strong stochasticity is involved. Some interesting examples are discussed here and are to be followed by a book dealing with frontier applications in physics and engineering. In Chapter I, it is shown that a use of positive operators can lead to monotone convergence for various classes of nonlinear partial differential equations. In Chapter II, the utility of conservation technique is shown. These techniques are suggested by physical principles. In Chapter III, it is shown that dyn mic programming applied to variational problems leads to interesting classes of nonlinear partial differential equations. In Chapter IV, this is investigated in greater detail. In Chapter V, we show. that the use of a transformation suggested by dynamic programming leads to a new method of successive approximations."
Together with recent trends in local convergence, semilocal convergence analysis constitutes a natural framework for the theoretical study of iterative methods. This monograph is the first to adequately cover both basic theory and new results in the area. It treats iterative methods for solving nonlinear equations with particular emphasis on theoretical aspects of semilocal convergence of Newton-type methods. An ideal introduction to the field, the book primarily contains research results obtained by the author, extending classical theorems, such as convergence results under weaker hypothesis, enlargement of the radius of convergence, improvements of certain constants or bounds.
Multiple Dirichlet Series, L-functions and Automorphic Forms gives the latest advances in the rapidly developing subject of Multiple Dirichlet Series, an area with origins in the theory of automorphic forms that exhibits surprising and deep connections to crystal graphs and mathematical physics. As such, it represents a new way in which areas including number theory, combinatorics, statistical mechanics, and quantum groups are seen to fit together. The volume also includes papers on automorphic forms and L-functions and related number-theoretic topics. This volume will be a valuable resource for graduate students and researchers in number theory, combinatorics, representation theory, mathematical physics, and special functions. Contributors: J. Beineke, B. Brubaker, D. Bump, G. Chinta, G. Cornelissen, C.A. Diaconu, S. Frechette, S. Friedberg, P. Garrett, D. Goldfeld, P.E. Gunnells, B. Heim, J. Hundley, D. Ivanov, Y. Komori, A.V. Kontorovich, O. Lorscheid, K. Matsumoto, P.J. McNamara, S.J. Patterson, M. Suzuki, H. Tsumura.
Useful both as a text for students and as a source of reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory which is most useful for its application in modern analysis. Topics studied include sets and classes, measures and outer measures, measurable functions, integration, general set functions, product spaces, transformations, probability, locally compact spaces, Haar measure and measure and topology in groups. The text is suitable for the beginning graduate student as well as the advanced undergraduate.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
Numerical analysis has witnessed many significant developments in
the 20th century. This book brings together 16 papers dealing with
historical developments, survey papers and papers on recent trends
in selected areas of numerical analysis, such as: approximation and
interpolation, solution of linear systems and eigenvalue problems,
iterative methods, quadrature rules, solution of ordinary-,
partial- and integral equations. The papers are reprinted from the
7-volume project of the "Journal of Computational and Applied
Mathematics" on '/homepage/sac/cam/na2000/index.htmlNumerical
Analysis 2000'. An introductory survey paper deals with the history
of the first courses on numerical analysis in several countries and
with the landmarks in the development of important algorithms and
concepts in the field.
This thesis is devoted to the systematic study of non-local theories that respect Lorentz invariance and are devoid of new, unphysical degrees of freedom. Such theories are attractive for phenomenological applications since they are mostly unconstrained by current experiments. Non-locality has played an increasingly important role in the physics of the last decades, appearing in effective actions in quantum field theory, and arising naturally in string theory and non-commutative geometry. It may even be a necessary ingredient for quantum theories of gravity. It is a feature of quantum entanglement, and may even solve the long-standing black hole information loss problem. "Non-locality" is a broad concept with many promising and fruitful applications in theoretical and mathematical physics. After a historical and pedagogical introduction into the concept of non-locality the author develops the notion of non-local Green functions to study various non-local weak-field problems in quantum mechanics, quantum field theory, gravity, and quantum field theory in curved spacetime. This thesis fills a gap in the literature by providing a self-contained exploration of weak-field effects in non-local theories, thereby establishing a "non-local intuition" which may serve as a stepping stone for studies of the full, non-linear problem of non-locality.
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
This unique book on the subject addresses fundamental problems and will be the standard reference for a long time to come. The authors have different scientific origins and combine these successfully, creating a text aimed at graduate students and researchers that can be used for courses and seminars.
Most of the problems posed by Physics to Mathematical Analysis are boundary value problems for partial differential equations and systems. Among them, the problems concerning linear evolution equations have an outstanding position in the study of the physical world, namely in fluid dynamics, elastodynamics, electromagnetism, plasma physics and so on. This Institute was devoted to these problems. It developed essentially the new methods inspired by Functional Analysis and specially by the theories of Hilbert spaces, distributions and ultradistributions. The lectures brought a detailed exposition of the novelties in this field by world known specialists. We held the Institute at the Sart Tilman Campus of the University of Liege from September 6 to 17, 1976. It was attended by 99 participants, 79 from NATO Countries [Belgium (30), Canada (2), Denmark (I), France (15), West Germany (9), Italy (5), Turkey (3), USA (14)] and 20 from non NATO Countries [Algeria (2), Australia (3), Austria (I), Finland (1), Iran (3), Ireland (I), Japan (6), Poland (1), Sweden (I), Zair (1)]. There were 5 courses of_ 6_ h. ollI'. s~. 1. nL lJ. , h. t;l. l. I. rl"~, 1. n,L ,_ h. t;l. l. I. r. !'~ , ?_ n. f~ ?_ h,,
The n-dimensionalmetaplectic groupSp(n,R) is the twofoldcoverof the sympl- n n tic group Sp(n,R), which is the group of linear transformations ofX = R xR that preserve the bilinear (alternate) form x y [( ), ( )] =? x, ? + y, ? . (0. 1) ? ? 2 n There is a unitary representation of Sp(n,R)intheHilbertspace L (R ), called the metaplectic representation,the image of which is the groupof transformations generated by the following ones: the linear changes of variables, the operators of multiplication by exponentials with pure imaginary quadratic forms in the ex- nent, and the Fourier transformation; some normalization factor enters the de?- tion of the operators of the ?rst and third species. The metaplectic representation was introduced in a great generality in [28] - special cases had been considered before, mostly in papers of mathematical physics - and it is of such fundamental importancethat the two concepts (the groupand the representation)havebecome virtually indistinguishable. This is not going to be our point of view: indeed, the main point of this work is to show that a certain ?nite covering of the symplectic group (generally of degree n) has another interesting representation, which enjoys analogues of most of the nicer properties of the metaplectic representation. We shall call it the anaplectic representation - other coinages that may come to your mind sound too medical - and shall consider ?rst the one-dimensional case, the main features of which can be described in quite elementary terms.
This book builds upon the earlier volume Problems in Analysis, more than doubling it with a new section of problems on complex analysis. The problems on real analysis from the earlier book have all been checked, and stylistic, typographical, and mathematical errors have been corrected. The problems in complex analysis cover most of the principal topics in the theory of functions of a complex variable. The problems in the book cover, in real analysis: set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces; in complex analysis: polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.
Quadrature domains were singled out about 30 years ago by D. Aharonov and H.S. Shapiro in connection with an extremal problem in function theory. Since then, a series of coincidental discoveries put this class of planar domains at the center of crossroads of several quite independent mathematical theories, e.g., potential theory, Riemann surfaces, inverse problems, holomorphic partial differential equations, fluid mechanics, operator theory. The volume is devoted to recent advances in the theory of quadrature domains, illustrating well the multi-facet aspects of their nature. The book contains a large collection of open problems pertaining to the general theme of quadrature domains.
During the last twenty-five years, the development of the theory of Banach lattices has stimulated new directions of research in the theory of positive operators and the theory of semigroups of positive operators. In particular, the recent investigations in the structure of the lattice ordered (Banach) algebra of the order bounded operators of a Banach lattice have led to many important results in the spectral theory of positive operators. The contributions contained in this volume were presented as lectures at a conference organized by the Caribbean Mathematics Foundation, and provide an overview of the present state of development of various areas of the theory of positive operators and their spectral properties. This book will be of interest to analysts whose work involves positive matrices and positive operators.
The classical $\ell^{p}$ sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces $\ell^{p}_{A}$ of analytic functions whose Taylor coefficients belong to $\ell^p$. Relations between the Banach space $\ell^p$ and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of $\ell^{p}_{A}$ and a discussion of the Wiener algebra $\ell^{1}_{A}$. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
In the Part at hand the authors undertake to give a presentation of the historical development of the theory of imbedding of function spaces, of the internal as well as the externals motives which have stimulated it, and of the current state of art in the field, in particular, what regards the methods employed today. The impossibility to cover all the enormous material connected with these questions inevitably forced on us the necessity to restrict ourselves to a limited circle of ideas which are both fundamental and of principal interest. Of course, such a choice had to some extent have a subjective character, being in the first place dictated by the personal interests of the authors. Thus, the Part does not constitute a survey of all contemporary questions in the theory of imbedding of function spaces. Therefore also the bibliographical references given do not pretend to be exhaustive; we only list works mentioned in the text, and a more complete bibliography can be found in appropriate other monographs. O.V. Besov, v.1. Burenkov, P.1. Lizorkin and V.G. Maz'ya have graciously read the Part in manuscript form. All their critical remarks, for which the authors hereby express their sincere thanks, were taken account of in the final editing of the manuscript.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; use Stein spaces. And in addition to this there are and prediction and electrical engineering can such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. |
![]() ![]() You may like...
The Timing of Toxicological Studies to…
C. Parkinson, N. McAuslane, …
Hardcover
R2,967
Discovery Miles 29 670
Fluorine In Pharmaceutical And Medicinal…
Veronique Gouverneur, Klaus Muller
Hardcover
R5,341
Discovery Miles 53 410
Handbook of Analysis of Oligonucleotides…
Jose V. Bonilla, G. Susan Srivatsa
Paperback
R2,590
Discovery Miles 25 900
Multifunctional Nanocarriers for…
Md. Abul Barkat, Harshita A.B., …
Hardcover
R7,127
Discovery Miles 71 270
Negotiating Health - Intellectual…
Pedro Roffe, Geoff Tansey
Hardcover
R4,481
Discovery Miles 44 810
Protein Engineering for Therapeutics…
K. Dane Professor Wittrup, Gregory L. Professor Verdine
Hardcover
R4,578
Discovery Miles 45 780
Plant and Human Health, Volume 1…
Munir Ozturk, Khalid Rehman Hakeem
Hardcover
R5,765
Discovery Miles 57 650
|