![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 35 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob. Titles in planning include Flavia Smarazzo and Alberto Tesei, Measure Theory: Radon Measures, Young Measures, and Applications to Parabolic Problems (2019) Elena Cordero and Luigi Rodino, Time-Frequency Analysis of Operators (2019) Mark M. Meerschaert, Alla Sikorskii, and Mohsen Zayernouri, Stochastic and Computational Models for Fractional Calculus, second edition (2020) Mariusz Lemanczyk, Ergodic Theory: Spectral Theory, Joinings, and Their Applications (2020) Marco Abate, Holomorphic Dynamics on Hyperbolic Complex Manifolds (2021) Miroslava Antic, Joeri Van der Veken, and Luc Vrancken, Differential Geometry of Submanifolds: Submanifolds of Almost Complex Spaces and Almost Product Spaces (2021) Kai Liu, Ilpo Laine, and Lianzhong Yang, Complex Differential-Difference Equations (2021) Rajendra Vasant Gurjar, Kayo Masuda, and Masayoshi Miyanishi, Affine Space Fibrations (2022)
This book gathers, in a beautifully structured way, recent findings on chain conditions in commutative algebra that were previously only available in papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their transfer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.
This book contains the material from an introductory course on integration theory taught at ETH (the SwissFederal Institute ofTechnology) in Zurich. Students taking the course are in their third or fourth year of tertiary studies and therefore have had substantial prior exposure to mathematics. The course assumes some familiarity with the concepts presented in the preceding courses. Since this book is addressed to a wider audience and since different in stitutes have different programmes, the same assumptions cannot be made here. As explaining everything in detail would have resulted in a book of daunting dimensions, whose very size would discourage all but those of epic heroism and dedication, we have chosen a compromise: weexplain in detail in the text itself only those ideas which are essential to the development of the subject matter and we have appended a separate glossary of all def initions used, adding explanations and examples as needed. The reader is, however, expected to be familiar with the basic properties of the Riemann integral as well as with basic facts from point-set topology; the latter are especially needed for Chapter 5, 'Measures on Hausdorff Spaces'. We have chosen this course in order to preserve the character of an intro duction at an intermediate level, which should nevertheless be accessible to those with limited prior knowledge, who are willing to postpone questions on matters not central to the development of the theory."
This means that semigroup theory may be applied directly to the study of the equation I'!.f = h on M. In [45] Yau proves that, for h ~ 0, there are no nonconstant, nonnegative solutions f in [j' for 1 < p < 00. From this, Yau gets the geometric fact that complete noncom pact Riemannian manifolds with nonnegative Ricci curvature must have infinite volume, a result which was announced earlier by Calabi [4]. 6. Concluding Remarks In several of the above results, positivity of the semigroup plays an important role. This was also true, although only implicitly, for the early work of Hille and Yosida on the Fokker-Planck equation, i.e., Equation (4) with c = O. But it was Phillips [41], and Lumer and Phillips [37] who first called attention to the importance of dissipative and dispersive properties of the generator in the context of linear operators in a Banach space. The generation theorems in the Batty-Robinson paper appear to be the most definitive ones, so far, for this class of operators. The fundamental role played by the infinitesimal operator, also for the understanding of order properties, in the commutative as well as the noncommutative setting, are highlighted in a number of examples and applications in the different papers, and it is hoped that this publication will be of interest to researchers in a broad spectrum of the mathematical sub-divisions.
The theory of vertex operator algebras and their representations has been showing its power in the solution of concrete mathematical problems and in the understanding of conceptual but subtle mathematical and physical struc- tures of conformal field theories. Much of the recent progress has deep connec- tions with complex analysis and conformal geometry. Future developments, especially constructions and studies of higher-genus theories, will need a solid geometric theory of vertex operator algebras. Back in 1986, Manin already observed in [Man) that the quantum theory of (super )strings existed (in some sense) in two entirely different mathematical fields. Under canonical quantization this theory appeared to a mathematician as the representation theories of the Heisenberg, Vir as oro and affine Kac- Moody algebras and their superextensions. Quantization with the help of the Polyakov path integral led on the other hand to the analytic theory of algebraic (super ) curves and their moduli spaces, to invariants of the type of the analytic curvature, and so on. He pointed out further that establishing direct mathematical connections between these two forms of a single theory was a "big and important problem. " On the one hand, the theory of vertex operator algebras and their repre- sentations unifies (and considerably extends) the representation theories of the Heisenberg, Virasoro and Kac-Moody algebras and their superextensions.
M.M. Lavrentiev is the author of many fundamental scientific results in many directions of mathematics and its applications, such as differential equations, inverse and ill-posed problems, tomography, numerical and applied mathematics. His results in the theory of inverse problems for differential equations and in tomography are well known all over the world. To honour him on the occasion of his 70th birthday renowned scientists in this field of mathematics, both from East and West, have contributed to this special collection of papers on ill-posed and inverse problems, which will be of interest to anyone working in this field.
This textbook describes selected topics in functional analysis as powerful tools of immediate use in many fields within applied mathematics, physics and engineering. It follows a very reader-friendly structure, with the presentation and the level of exposition especially tailored to those who need functional analysis but don't have a strong background in this branch of mathematics. For every tool, this work emphasizes the motivation, the justification for the choices made, and the right way to employ the techniques. Proofs appear only when necessary for the safe use of the results. The book gently starts with a road map to guide reading. A subsequent chapter recalls definitions and notation for abstract spaces and some function spaces, while Chapter 3 enters dual spaces. Tools from Chapters 2 and 3 find use in Chapter 4, which introduces distributions. The Linear Functional Analysis basic triplet makes up Chapter 5, followed by Chapter 6, which introduces the concept of compactness. Chapter 7 brings a generalization of the concept of derivative for functions defined in normed spaces, while Chapter 8 discusses basic results about Hilbert spaces that are paramount to numerical approximations. The last chapter brings remarks to recent bibliographical items. Elementary examples included throughout the chapters foster understanding and self-study. By making key, complex topics more accessible, this book serves as a valuable resource for researchers, students, and practitioners alike that need to rely on solid functional analysis but don't need to delve deep into the underlying theory.
This volume highlights contributions of women mathematicians in the study of complex materials and includes both original research papers and reviews. The featured topics and methods draw on the fields of Calculus of Variations, Partial Differential Equations, Functional Analysis, Differential Geometry and Topology, as well as Numerical Analysis and Mathematical Modelling. Areas of applications include foams, fluid-solid interactions, liquid crystals, shape-memory alloys, magnetic suspensions, failure in solids, plasticity, viscoelasticity, homogenization, crystallization, grain growth, and phase-field models.
Numerical analysis has witnessed many significant developments in
the 20th century. This book brings together 16 papers dealing with
historical developments, survey papers and papers on recent trends
in selected areas of numerical analysis, such as: approximation and
interpolation, solution of linear systems and eigenvalue problems,
iterative methods, quadrature rules, solution of ordinary-,
partial- and integral equations. The papers are reprinted from the
7-volume project of the "Journal of Computational and Applied
Mathematics" on '/homepage/sac/cam/na2000/index.htmlNumerical
Analysis 2000'. An introductory survey paper deals with the history
of the first courses on numerical analysis in several countries and
with the landmarks in the development of important algorithms and
concepts in the field.
This text is an introduction to the use of vectors in a wide range of undergraduate disciplines. It is written specifically to match the level of experience and mathematical qualifications of students entering undergraduate and Higher National programmes and it assumes only a minimum of mathematical background on the part of the reader. Basic mathematics underlying the use of vectors is covered, and the text goes from fundamental concepts up to the level of first-year examination questions in engineering and physics. The material treated includes electromagnetic waves, alternating current, rotating fields, mechanisms, simple harmonic motion and vibrating systems. There are examples and exercises and the book contains many clear diagrams to complement the text. The provision of examples allows the student to become proficient in problem solving and the application of the material to a range of applications from science and engineering demonstrates the versatility of vector algebra as an analytical tool.
This book offers a rigorous and coherent introduction to the five basic number systems of mathematics, namely natural numbers, integers, rational numbers, real numbers, and complex numbers. It is a subject that many mathematicians believe should be learned by any student of mathematics including future teachers. The book starts with the development of Peano arithmetic in the first chapter which includes mathematical induction and elements of recursion theory. It proceeds to an examination of integers that also covers rings and ordered integral domains. The presentation of rational numbers includes material on ordered fields and convergence of sequences in these fields. Cauchy and Dedekind completeness properties of the field of real numbers are established, together with some properties of real continuous functions. An elementary proof of the Fundamental Theorem of Algebra is the highest point of the chapter on complex numbers. The great merit of the book lies in its extensive list of exercises following each chapter. These exercises are designed to assist the instructor and to enhance the learning experience of the students.
This volume is dedicated to Professor Stefan Samko on the occasion of his seventieth birthday. The contributions display the range of his scientific interests in harmonic analysis and operator theory. Particular attention is paid to fractional integrals and derivatives, singular, hypersingular and potential operators in variable exponent spaces, pseudodifferential operators in various modern function and distribution spaces, as well as related applications, to mention but a few. Most contributions were firstly presented in two conferences at Lisbon and Aveiro, Portugal, in June-July 2011.
This open access proceedings volume brings selected, peer-reviewed contributions presented at the Stochastic Transport in Upper Ocean Dynamics (STUOD) 2021 Workshop, held virtually and in person at the Imperial College London, UK, September 20-23, 2021. The STUOD project is supported by an ERC Synergy Grant, and led by Imperial College London, the National Institute for Research in Computer Science and Automatic Control (INRIA) and the French Research Institute for Exploitation of the Sea (IFREMER). The project aims to deliver new capabilities for assessing variability and uncertainty in upper ocean dynamics. It will provide decision makers a means of quantifying the effects of local patterns of sea level rise, heat uptake, carbon storage and change of oxygen content and pH in the ocean. Its multimodal monitoring will enhance the scientific understanding of marine debris transport, tracking of oil spills and accumulation of plastic in the sea. All topics of these proceedings are essential to the scientific foundations of oceanography which has a vital role in climate science. Studies convened in this volume focus on a range of fundamental areas, including: Observations at a high resolution of upper ocean properties such as temperature, salinity, topography, wind, waves and velocity; Large scale numerical simulations; Data-based stochastic equations for upper ocean dynamics that quantify simulation error; Stochastic data assimilation to reduce uncertainty. These fundamental subjects in modern science and technology are urgently required in order to meet the challenges of climate change faced today by human society. This proceedings volume represents a lasting legacy of crucial scientific expertise to help meet this ongoing challenge, for the benefit of academics and professionals in pure and applied mathematics, computational science, data analysis, data assimilation and oceanography.
This monograph presents a systematic theory of weak solutions in Hilbert-Sobolev spaces of initial-boundary value problems for parabolic systems of partial differential equations with general essential and natural boundary conditions and minimal hypotheses on coefficients. Applications to quasilinear systems are given, including local existence for large data, global existence near an attractor, the Leray and Hopf theorems for the Navier-Stokes equations and results concerning invariant regions. Supplementary material is provided, including a self-contained treatment of the calculus of Sobolev functions on the boundaries of Lipschitz domains and a thorough discussion of measurability considerations for elements of Bochner-Sobolev spaces. This book will be particularly useful both for researchers requiring accessible and broadly applicable formulations of standard results as well as for students preparing for research in applied analysis. Readers should be familiar with the basic facts of measure theory and functional analysis, including weak derivatives and Sobolev spaces. Prior work in partial differential equations is helpful but not required.
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.
For experiments, dimensional analysis enables the design, checks the validity, orders the procedure and synthesises the data. Additionally it can provide relationships between variables where standard analysis is not available. This widely valuable analysis for engineers and scientists is here presented to the student, the teacher and the researcher. It is the first complete modern text that covers developments over the last three decades while closing all outstanding logical gaps. Dimensional Analysis also lists the logical stages of the analysis, so showing clearly the care to be taken in its use while revealing the very few limitations of application. As the conclusion of that logic, it gives the author's original proof of the fundamental and only theorem. Unlike past texts, Dimensional Analysis includes examples for which the answer does not already exist from standard analysis. It also corrects the many errors present in the existing literature by including accurate solutions. Dimensional Analysis is written for all branches of engineering and science as a teaching book covering both undergraduate and postgraduate courses, as a guide for the lecturer and as a reference volume for the researcher.
Considerable attention from the international scientific community is currently focused on the wide ranging applications of wavelets. For the first time, the field's leading experts have come together to produce a complete guide to wavelet transform applications in medicine and biology. Wavelets in Medicine and Biology provides accessible, detailed, and comprehensive guidelines for all those interested in learning about wavelets and their applications to biomedical problems.
This book, written by two experts in the field, deals with classes of iterative methods for the approximate solution of fixed points equations for operators satisfying a special contractivity condition, the Fejer property. The book is elementary, self-contained and uses methods from functional analysis, with a special focus on the construction of iterative schemes. Applications to parallelization, randomization and linear programming are also considered.
In the fifties and sixties, several real problems, old and new, especially in Physics, Mechanics, Fluidodynamics, Structural Engi- neering, have shown the need of new mathematical models for study- ing the equilibrium of a system. This has led to the formulation of Variational Inequalities (by G. Stampacchia), and to the develop- ment of Complementarity Systems (by W.S. Dorn, G.B. Dantzig, R.W. Cottle, O.L. Mangasarian et al.) with important applications in the elasto-plastic field (initiated by G. Maier). The great advan- tage of these models is that the equilibrium is not necessarily the extremum of functional, like energy, so that no such functional must be supposed to exist. In the same decades, in some fields like Control Theory, Net- works, Industrial Systems, Logistics, Management Science, there has been a strong request of mathmatical models for optimizing situa- tions where there are concurrent objectives, so that Vector Optimiza- tion (initiated by W. Pareto) has received new impetus. With regard to equilibrium problems, Vector Optimization has the above - mentioned drawback of being obliged to assume the exis- tence of a (vector) functional. Therefore, at the end of the seventies the study of Vector Variational Inequalities began with the scope of exploiting the advantages of both variational and vector models. This volume puts together most of the recent mathematical results in Vector Variational Inequalities with the purpose of contributing to further research.
Since from more than a century, the study of various types of integral equations and inequalities has been focus of great attention by many researchers, interested both in theory and its applications. In particular, there exists a very rich literature related to the integral equations and inequalities and their applications. The present monograph is an attempt to organize recent progress related to the Multidimensional integral equations and inequalities, which we hope will widen the scope of their new applications. The field to be covered is extremely wide and it is nearly impossible to treat all of them here. The material included in the monograph is recent and hard to find in other books. It is accessible to any reader with reasonable background in real analysis and acquaintance with its related areas. All results are presented in an elementary way and the book could also serve as a textbook for an advanced graduate course. The book deserves a warm welcome to those who wish to learn the subject and it will also be most valuable as a source of reference in the field. It will be an invaluable reading for mathematicians, physicists and engineers and also for graduate students, scientists and scholars wishing to keep abreast of this important area of research.
James Stirling's "Methodus Differentialis" is one of the early classics of numerical analysis. It contains not only the results and ideas for which Stirling is chiefly remembered, for example, Stirling numbers and Stirling's asymptotic formula for factorials, but also a wealth of material on transformations of series and limiting processes. An impressive collection of examples illustrates the efficacy of Stirling's methods by means of numerical calculations, and some germs of later ideas, notably the Gamma function and asymptotic series, are also to be found. This volume presents a new translation of Stirling's text that features an extensive series of notes in which Stirling's results and calculations are analysed and historical background is provided. Ian Tweddle places the text in its contemporary context, but also relates the material to the interests of practising mathematicians today. Clear and accessible, this book will be of interest to mathematical historians, researchers and numerical analysts.
This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science. Contents: Preliminaries The stochastic integral and Ito formula OU processes and SDEs Random attractors Applications Bibliography Index
Intended as a systematic text on topological vector spaces, this text assumes familiarity with the elements of general topology and linear algebra. Similarly, the elementary facts on Hilbert and Banach spaces are not discussed in detail here, since the book is mainly addressed to those readers who wish to go beyond the introductory level. Each of the chapters is preceded by an introduction and followed by exercises, which in turn are devoted to further results and supplements, in particular, to examples and counter-examples, and hints have been given where appropriate. This second edition has been thoroughly revised and includes a new chapter on C DEGREES* and W DEGR
Even the simplest mathematical abstraction of the phenomena of reality the real line-can be regarded from different points of view by different mathematical disciplines. For example, the algebraic approach to the study of the real line involves describing its properties as a set to whose elements we can apply" operations," and obtaining an algebraic model of it on the basis of these properties, without regard for the topological properties. On the other hand, we can focus on the topology of the real line and construct a formal model of it by singling out its" continuity" as a basis for the model. Analysis regards the line, and the functions on it, in the unity of the whole system of their algebraic and topological properties, with the fundamental deductions about them obtained by using the interplay between the algebraic and topological structures. The same picture is observed at higher stages of abstraction. Algebra studies linear spaces, groups, rings, modules, and so on. Topology studies structures of a different kind on arbitrary sets, structures that give mathe matical meaning to the concepts of a limit, continuity, a neighborhood, and so on. Functional analysis takes up topological linear spaces, topological groups, normed rings, modules of representations of topological groups in topological linear spaces, and so on. Thus, the basic object of study in functional analysis consists of objects equipped with compatible algebraic and topological structures." |
You may like...
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
|