![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Inverse scattering theory is an important area of applied mathematics due to its central role in such areas as medical imaging , nondestructive testing and geophysical exploration. Until recently all existing algorithms for solving inverse scattering problems were based on using either a weak scattering assumption or on the use of nonlinear optimization techniques. The limitations of these methods have led in recent years to an alternative approach to the inverse scattering problem which avoids the incorrect model assumptions inherent in the use of weak scattering approximations as well as the strong a priori information needed in order to implement nonlinear optimization techniques. These new methods come under the general title of qualitative methods in inverse scattering theory and seek to determine an approximation to the shape of the scattering object as well as estimates on its material properties without making any weak scattering assumption and using essentially no a priori information on the nature of the scattering object. This book is designed to be an introduction to this new approach in inverse scattering theory focusing on the use of sampling methods and transmission eigenvalues. In order to aid the reader coming from a discipline outside of mathematics we have included background material on functional analysis, Sobolev spaces, the theory of ill posed problems and certain topics in in the theory of entire functions of a complex variable. This book is an updated and expanded version of an earlier book by the authors published by Springer titled Qualitative Methods in Inverse Scattering Theory Review of Qualitative Methods in Inverse Scattering Theory All in all, the authors do exceptionally well in combining such a wide variety of mathematical material and in presenting it in a well-organized and easy-to-follow fashion. This text certainly complements the growing body of work in inverse scattering and should well suit both new researchers to the field as well as those who could benefit from such a nice codified collection of profitable results combined in one bound volume. SIAM Review, 2006
The present edition differs from the original German one mainly in the following addi tional material: weighted norm inequalities for maximal functions and singular opera tors ( 12, Chap. XI), polysingular integral operators and pseudo-differential operators ( 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations ( 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise."
This book is intended as a fairly complete presentation of what..'We call the discretization approach to functional integrals, i.e. path integrals defined as limits of discretized axpressions. In its main parts it is based 0n the original work of the authors. We hope to have provided the readers with a rather complete and up-to-date bibliography, and we apologize to authors whose work has not been cited through ignorance ori our part. Our main concern has been to present a for malism that is practical and which can be adapted to make computations in the numerous areas where path integrals are being increasingly used. For these reasons applications, illustrative examples, and detailed calculations are included. The book is partially based on lectures given by one of us (E.T.) at the Institut de Physique Theorique of the u.c.L. (Louvain-la-Neuve). We thank Dr. M.E. Brachet (University of Paris) for his help in the redaction of chapter 8. We are indebted to many of our colleagues and especially to the members of the Instituut voor Theoretische Fysica, K.U. Leuven for their interest and encouragement. We also thank Professor Claudio Anguita, Dean of the Faculty of Physics and Mathematics of .the University of Chile, for his constant support. Special thanks are due to Christine Detroije and Lutgarde Dubois for their very fine and hard work in typing the manuscript."
In the study of integrable systems, two different approaches in particular have attracted considerable attention during the past twenty years. (1) The inverse scattering transform (IST), using complex function theory, which has been employed to solve many physically significant equations, the soliton' equations. (2) Twistor theory, using differential geometry, which has been used to solve the self-dual Yang--Mills (SDYM) equations, a four-dimensional system having important applications in mathematical physics. Both soliton and the SDYM equations have rich algebraic structures which have been extensively studied. Recently, it has been conjectured that, in some sense, all soliton equations arise as special cases of the SDYM equations; subsequently many have been discovered as either exact or asymptotic reductions of the SDYM equations. Consequently what seems to be emerging is that a natural, physically significant system such as the SDYM equations provides the basis for a unifying framework underlying this class of integrable systems, i.e. soliton' systems. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. The majority of nonlinear evolution equations are nonintegrable, and so asymptotic, numerical perturbation and reduction techniques are often used to study such equations. This book also contains articles on perturbed soliton equations. PainlevA(c) analysis of partial differential equations, studies of the PainlevA(c) equations and symmetry reductions of nonlinear partial differential equations. (ABSTRACT) In the study of integrable systems, two different approaches in particularhave attracted considerable attention during the past twenty years; the inverse scattering transform (IST), for soliton' equations and twistor theory, for the self-dual Yang--Mills (SDYM) equations. This book contains several articles on the reduction of the SDYM equations to soliton equations and the relationship between the IST and twistor methods. Additionally, it contains articles on perturbed soliton equations, Painleve analysis of partial differential equations, studies of the Painleve equations and symmetry reductions of nonlinear partial differential equations.
This book studies the existence and uniqueness of solutions to parabolic-type equations with irregular coefficients and/or initial conditions. It elaborates on the DiPerna-Lions theory of renormalized solutions to linear transport equations and related equations, and also examines the connection between the results on the partial differential equation and the well-posedness of the underlying stochastic/ordinary differential equation.
For many years Serge Lang has given talks to undergraduates on selected items in mathematics which could be extracted at a level understandable by students who have had calculus. Written in a conversational tone, Lang now presents a collection of those talks as a book. The talks could be given by faculty, but even better, they may be given by students in seminars run by the students themselves. Undergraduates, and even some high school students, will enjoy the talks which cover prime numbers, the abc conjecture, approximation theorems of analysis, Bruhat-Tits spaces, harmonic and symmetric polynomials, and more in a lively and informal style.
The Markov chain approximation methods are widely used for the numerical solution of nonlinear stochastic control problems in continuous time. This book extends the methods to stochastic systems with delays. The book is the first on the subject and will be of great interest to all those who work with stochastic delay equations and whose main interest is either in the use of the algorithms or in the mathematics. An excellent resource for graduate students, researchers, and practitioners, the work may be used as a graduate-level textbook for a special topics course or seminar on numerical methods in stochastic control.
With the first edition out of print, we decided to arrange for republi cation of Denumerrible Markov Ohains with additional bibliographic material. The new edition contains a section Additional Notes that indicates some of the developments in Markov chain theory over the last ten years. As in the first edition and for the same reasons, we have resisted the temptation to follow the theory in directions that deal with uncountable state spaces or continuous time. A section entitled Additional References complements the Additional Notes. J. W. Pitman pointed out an error in Theorem 9-53 of the first edition, which we have corrected. More detail about the correction appears in the Additional Notes. Aside from this change, we have left intact the text of the first eleven chapters. The second edition contains a twelfth chapter, written by David Griffeath, on Markov random fields. We are grateful to Ted Cox for his help in preparing this material. Notes for the chapter appear in the section Additional Notes. J.G.K., J.L.S., A.W.K."
* Presented from a geometric analytical viewpoint, this work addresses advanced topics in complex analysis that verge on modern areas of research * Methodically designed with individual chapters containing a rich collection of exercises, examples, and illustrations
This volume is dedicated to the memory of Shoshichi Kobayashi, and gathers contributions from distinguished researchers working on topics close to his research areas. The book is organized into three parts, with the first part presenting an overview of Professor Shoshichi Kobayashi's career. This is followed by two expository course lectures (the second part) on recent topics in extremal Kahler metrics and value distribution theory, which will be helpful for graduate students in mathematics interested in new topics in complex geometry and complex analysis. Lastly, the third part of the volume collects authoritative research papers on differential geometry and complex analysis. Professor Shoshichi Kobayashi was a recognized international leader in the areas of differential and complex geometry. He contributed crucial ideas that are still considered fundamental in these fields. The book will be of interest to researchers in the fields of differential geometry, complex geometry, and several complex variables geometry, as well as to graduate students in mathematics.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The SCQlldIII of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with . physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They. draw upon widely different sections of mathematics."
It isn't that they can't see Approach your problems from the solution. the right end and begin with It is that they can't see the the answers. Then one day, perhaps you will find the problem. final question. G. K. Chesterton. The Scandal 'The Hermit Clad in Crane of Father Brown 'The Point of a Pin'. Feathers' in R. van Gulik's The Chinese Maze l1urders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Stochastic Differential Equations have become increasingly important in modelling complex systems in physics, chemistry, biology, climatology and other fields. This book examines and provides systems for practitioners to use, and provides a number of case studies to show how they can work in practice.
Engineering applications offer benefits and opportunities across a range of different industries and fields. By developing effective methods of analysis, results and solutions are produced with higher accuracy. Numerical and Analytical Solutions for Solving Nonlinear Equations in Heat Transfer is an innovative source of academic research on the optimized techniques for analyzing heat transfer equations and the application of these methods across various fields. Highlighting pertinent topics such as the differential transformation method, industrial applications, and the homotopy perturbation method, this book is ideally designed for engineers, researchers, graduate students, professionals, and academics interested in applying new mathematical techniques in engineering sciences. Topics Covered: Adomian Decomposition Method Differential Transformation Method Homotopy Analysis Method Homotopy Perturbation Method Industrial applications Variational Iteration Method
Monte-Carlo techniques have increasingly become a key method used in quantitative research. This book introduces engineers and scientists to the basics of using the Monte-Carlo simulation method which is used in Operations Research and other fields to understand the impact of risk and uncertainty in prediction and forecasting models. Monte-Carlo Simulation: An Introduction for Engineers and Scientists explores several specific applications in addition to illustrating the principles behind the methods. The question of accuracy and efficiency with using the method is addressed thoroughly within each chapter and all program listings are included in the discussion of each application to facilitate further research for the reader using Python programming language. Beginning engineers and scientists either already in or about to go into industry or commercial and government scientific laboratories will find this book essential. It could also be of interest to undergraduates in engineering science and mathematics, as well as instructors and lecturers who have no prior knowledge of Monte-Carlo simulations.
This volume consists of the plenary lectures and invited talks in the special session on pseudo-differential operators given at the Fourth Congress of the International Society for Analysis, Applications and Computation (ISAAC) held at York University in Toronto, August 11-16, 2003. The theme is to look at pseudo-differential operators in a very general sense and to report recent advances in a broad spectrum of topics, such as pde, quantization, filters and localization operators, modulation spaces, and numerical experiments in wavelet transforms and orthonormal wavelet bases.
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims at presenting self-contained, state- of- the- art models of those techniques with applications to different classes of partial differential equations: transport, heat, wave and Schrodinger equations. It also offers more sophisticated models originating from fluid mechanics (in particular the incompressible and compressible Navier-Stokes equations) or general relativity. It is either directed to anyone with a good undergraduate level of knowledge in analysis or useful for experts who are eager to know the benefit that one might gain from Fourier analysis when dealing with nonlinear partial differential equations. "
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
The theory of mean periodic functions is a subject which goes back to works of Littlewood, Delsarte, John and that has undergone a vigorous development in recent years. There has been much progress in a number of problems concerning local - pects of spectral analysis and spectral synthesis on homogeneous spaces. The study oftheseproblemsturnsouttobecloselyrelatedtoavarietyofquestionsinharmonic analysis, complex analysis, partial differential equations, integral geometry, appr- imation theory, and other branches of contemporary mathematics. The present book describes recent advances in this direction of research. Symmetric spaces and the Heisenberg group are an active ?eld of investigation at 2 the moment. The simplest examples of symmetric spaces, the classical 2-sphere S 2 and the hyperbolic plane H , play familiar roles in many areas in mathematics. The n Heisenberg groupH is a principal model for nilpotent groups, and results obtained n forH may suggest results that hold more generally for this important class of Lie groups. The purpose of this book is to develop harmonic analysis of mean periodic functions on the above spaces.
This volume is dedicated to the eminent Russian mathematician Igor Borisovich Simonenko on the occasion of his 70th birthday. The contributions are written by leading experts and present the state of the art in a number of areas originally initiated in pioneer works by I. B. Simonenko. Among the topics covered are Fredholm theory for singular integral and convolution operators, estimates for singular integral operators on Carleson curves acting in Lp spaces with variable exponents, the finite section method for band-dominated and Toeplitz operators, SzegA-type theorems, and the averaging method for nonlinear equations. The book testifies to the wide mathematical interest of I. B. Simonenko and includes a biography, his list of publications and a list of his Ph.D. students.
Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij ] V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR 3.Wedenoteby ST = 0, T]/{a, T}theunitarycirclepara metrizedby t E 0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP( O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull . 7.Wedenoteby(.1.)and11.11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)"
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
Approach your problem from the right end It isn't that they can't see the solution. and begin with the answers. It is that they can't see the problem. Then one day, perhaps you will find the final question. G. K. Chesterton. The Scandal of Father Brown The point of a Pin. The Hermit Clad in Crane Feathers in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addi tion to this there are such new emerging subdisciplines as "experimental mathematical," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes."
This book describes the solution of electrodynamic boundary problems, which arose in the practical life of a designer. Only a few problems can be solved analytically and some of these solutions are given in the book, for example, the computation of a strip line in a rectangular or circular cylinder capacitance. Practical lines' configurations require computational work. As the authors' practice shows, the use of Green functions, leading to singular integral equations, is a powerful and pretty universal method to solve different boundary problems, including electrodynamic ones. The book presents the results of computations of microstrip lines on magnetized (longitudinally and transversally) ferrite and semiconductor substrates taking into account all the geometric sizes. The properties of gyrotropic media are described in the book for the reader's convenience. The geometrical shape may be practically any. The integral equations are exact and give the proper field near the edges. Actually, the use of singular integral equations reduces the experimental verification to minimum. The book will be useful for students, engineers, designers and researchers. It contains a lot of computed results, which are verified experimentally and can be used immediately. |
![]() ![]() You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,396
Discovery Miles 33 960
One-Dimensional Ergodic Schrodinger…
David Damanik, Jake Fillman
Paperback
R2,198
Discovery Miles 21 980
|