Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The monograph addresses some problems particularly with regard to ill-posedness of boundary value problems and problems where we cannot expect to have uniqueness of their solutions in the standard functional spaces. Bringing original and previous results together, it tackles computational challenges by exploiting methods of approximation and asymptotic analysis and harnessing differences between optimal control problems and their underlying PDEs
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hormander function spaces. This theory was constructed by the authors in a number of papers published in 2005 2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a reader-friendly style. The complete proofs of theorems are given. This monograph is intended for a wide range of mathematicians whose research interests concern with mathematical analysis and differential equations."
In this book, the author compares the meaning of stability in different subfields of numerical mathematics. Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability. "
This volume presents selected papers by the brilliant Uruguayan mathematician Ricardo Mane, known for his outstanding contributions to dynamical systems and ergodic theory. He was a student of Jacob Palis at IMPA and pursued his whole scientific career at IMPA. Mane was invited to speak twice in the section of Ordinary Differential Equations and Dynamical Systems, at the International Congress of Mathematics held in Warsaw in 1983 and in Zurich in 1994. He was also a speaker at the Colloquium organized by the Societe Mathematique de France, celebrating R. Thom's 65 anniversary. In 1994, he became a member of the Brazilian Academy of Sciences and was awarded the Third World Academy of Sciences Prize for Mathematics.
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry. This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field.
The application of methodological approaches and mathematical formalisms proper to Physics and Engineering to investigate and describe biological processes and design biological structures has led to the development of many disciplines in the context of computational biology and biotechnology. The best known applicative domain is tissue engineering and its branches. Recent domains of interest are in the field of biophysics, e.g.: multiscale mechanics of biological membranes and films and filaments; multiscale mechanics of adhesion; biomolecular motors and force generation. Modern hypotheses, models, and tools are currently emerging and resulting from the convergence of the methods and phylosophycal apporaches of the different research areas and disciplines. All these emerging approaches share the purpose of disentangling the complexity of organisms, tissues, and cells and mimiking the function of living systems. The contributions presented in this book are current research highlights of six challenging and representative applicative domains of phyisical, engineering, and computational approaches in medicine and biology, i.e tissue engineering, modelling of molecular structures, cell mechanics and cell adhesion processes, cancer physics, and physico-chemical processes of metabolic interactions. Each chapter presents a compendium or a review of the original results achieved by authors in the last years. Furthermore, the book also wants to pinpoint the questions that are still open and that could propel the future research.
Brownian dynamics serve as mathematical models for the diffusive motion of microscopic particles of various shapes in gaseous, liquid, or solid environments. The renewed interest in Brownian dynamics is due primarily to their key role in molecular and cellular biophysics: diffusion of ions and molecules is the driver of all life. Brownian dynamics simulations are the numerical realizations of stochastic differential equations that model the functions of biological micro devices such as protein ionic channels of biological membranes, cardiac myocytes, neuronal synapses, and many more. Stochastic differential equations are ubiquitous models in computational physics, chemistry, biophysics, computer science, communications theory, mathematical finance theory, and many other disciplines. Brownian dynamics simulations of the random motion of particles, be it molecules or stock prices, give rise to mathematical problems that neither the kinetic theory of Maxwell and Boltzmann, nor Einstein's and Langevin's theories of Brownian motion could predict.This book takes the readers on a journey that starts with the rigorous definition of mathematical Brownian motion, and ends with the explicit solution of a series of complex problems that have immediate applications. It is aimed at applied mathematicians, physicists, theoretical chemists, and physiologists who are interested in modeling, analysis, and simulation of micro devices of microbiology. The book contains exercises and worked out examples throughout.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
In this book, fundamental methods of nonlinear analysis are introduced, discussed and illustrated in straightforward examples. Each method considered is motivated and explained in its general form, but presented in an abstract framework as comprehensively as possible. A large number of methods are applied to boundary value problems for both ordinary and partial differential equations. In this edition we have made minor revisions, added new material and organized the content slightly differently. In particular, we included evolutionary equations and differential equations on manifolds. The applications to partial differential equations follow every abstract framework of the method in question. The text is structured in two levels: a self-contained basic level and an advanced level - organized in appendices - for the more experienced reader. The last chapter contains more involved material and can be skipped by those new to the field. This book serves as both a textbook for graduate-level courses and a reference book for mathematicians, engineers and applied scientists
The behavior of materials at the nanoscale is a key aspect of modern nanoscience and nanotechnology. This book presents rigorous mathematical techniques showing that some very useful phenomenological properties which can be observed at the nanoscale in many nonlinear reaction-diffusion processes can be simulated and justified mathematically by means of homogenization processes when a certain critical scale is used in the corresponding framework.
Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateaus problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateaus problem have no interior branch points.
Exercises in Analysis will be published in two volumes. This first volume covers problems in five core topics of mathematical analysis: metric spaces; topological spaces; measure, integration and Martingales; measure and topology and functional analysis. Each of five topics correspond to a different chapter with inclusion of the basic theory and accompanying main definitions and results, followed by suitable comments and remarks for better understanding of the material. At least 170 exercises/problems are presented for each topic, with solutions available at the end of each chapter. The entire collection of exercises offers a balanced and useful picture for the application surrounding each topic. This nearly encyclopedic coverage of exercises in mathematical analysis is the first of its kind and is accessible to a wide readership. Graduate students will find the collection of problems valuable in preparation for their preliminary or qualifying exams as well as for testing their deeper understanding of the material. Exercises are denoted by degree of difficulty. Instructors teaching courses that include one or all of the above-mentioned topics will find the exercises of great help in course preparation. Researchers in analysis may find this Work useful as a summary of analytic theories published in one accessible volume.
With a long history of innovation in the market, Larson/Edwards' Calculus, International Metric Edition has been widely praised by a generation of students and professors for solid and effective pedagogy that addresses the needs of a broad range of teaching and learning styles and environments. This edition clearly presents and effectively demonstrates the concepts and rules of calculus with a student-focused approach. It offers a wealth of learning support and digital resources - all thoroughly updated and refined using proven learning design principles that remove typical barriers to learning to create a carefully planned, inclusive experience for all students.
Inverse problems are usually nonlinear and are separated into one-dimensional and multidimensional problems, depending on whether the sought function (or functions) is a function of one variable or of many. Multidimensionality of inverse problems has particular value at present, because practice shows that many investigating processes are described by an equation, of which the co-efficient essentially depends on many variables. This monograph is devoted to statements of multidimensional inverse problems, in particular to methods of their investigation. Questions of the uniqueness of solution, solvability and stability are studied. Methods to construct a solution are given and, in certain cases, inversion formulas are given as well. Concrete applications of the theory developed here are also given. Where possible, the author has stopped to consider the method of investigation of the problems, thereby sometimes losing generality and quantity of the problems, which can be examined by such a method. The book should be of interet to researchers in the field of applied mathematics, geophysics and mathematical biology.
This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
New Edition: Fractional Calculus: An Introduction for Physicists (3rd Edition)Fractional calculus is undergoing rapid and ongoing development. We can already recognize, that within its framework new concepts and strategies emerge, which lead to new challenging insights and surprising correlations between different branches of physics.This book is an invitation both to the interested student and the professional researcher. It presents a thorough introduction to the basics of fractional calculus and guides the reader directly to the current state-of-the-art physical interpretation. It is also devoted to the application of fractional calculus on physical problems, in the subjects of classical mechanics, friction, damping, oscillations, group theory, quantum mechanics, nuclear physics, and hadron spectroscopy up to quantum field theory.
Descriptor linear systems theory is an important part in the general field of control systems theory, and has attracted much attention in the last two decades. In spite of the fact that descriptor linear systems theory has been a topic very rich in content, there have been only a few books on this topic. This book provides a systematic introduction to the theory of continuous-time descriptor linear systems and aims to provide a relatively systematic introduction to the basic results in descriptor linear systems theory. The clear representation of materials and a large number of examples make this book easy to understand by a large audience. General readers will find in this book a comprehensive introduction to the theory of descriptive linear systems. Researchers will find a comprehensive description of the most recent results in this theory and students will find a good introduction to some important problems in linear systems theory.
Network Science is the emerging field concerned with the study of large, realistic networks. This interdisciplinary endeavor, focusing on the patterns of interactions that arise between individual components of natural and engineered systems, has been applied to data sets from activities as diverse as high-throughput biological experiments, online trading information, smart-meter utility supplies, and pervasive telecommunications and surveillance technologies. This unique text/reference provides a fascinating insight into the state of the art in network science, highlighting the commonality across very different areas of application and the ways in which each area can be advanced by injecting ideas and techniques from another. The book includes contributions from an international selection of experts, providing viewpoints from a broad range of disciplines. It emphasizes networks that arise in nature-such as food webs, protein interactions, gene expression, and neural connections-and in technology-such as finance, airline transport, urban development and global trade. Topics and Features: begins with a clear overview chapter to introduce this interdisciplinary field; discusses the classic network science of fixed connectivity structures, including empirical studies, mathematical models and computational algorithms; examines time-dependent processes that take place over networks, covering topics such as synchronisation, and message passing algorithms; investigates time-evolving networks, such as the World Wide Web and shifts in topological properties (connectivity, spectrum, percolation); explores applications of complex networks in the physical and engineering sciences, looking ahead to new developments in the field. Researchers and professionals from disciplines as varied as computer science, mathematics, engineering, physics, chemistry, biology, ecology, neuroscience, epidemiology, and the social sciences will all benefit from this topical and broad overview of current activities and grand challenges in the unfolding field of network science.
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
Covers uniformly recurrent solutions and c-almost periodic solutions of abstract Volterra integro-differential equations as well as various generalizations of almost periodic functions in Lebesgue spaces with variable coefficients. Treats multi-dimensional almost periodic type functions and their generalizations in adequate detail.
All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field.
Conceived as a series of more or less autonomous essays, the present book critically exposes the initial developments of continuum thermo-mechanics in a post Newtonian period extending from the creative works of the Bernoullis to the First World war, i.e., roughly during first the "Age of reason" and next the "Birth of the modern world". The emphasis is rightly placed on the original contributions from the "Continental" scientists (the Bernoulli family, Euler, d'Alembert, Lagrange, Cauchy, Piola, Duhamel, Neumann, Clebsch, Kirchhoff, Helmholtz, Saint-Venant, Boussinesq, the Cosserat brothers, Caratheodory) in competition with their British peers (Green, Kelvin, Stokes, Maxwell, Rayleigh, Love,..). It underlines the main breakthroughs as well as the secondary ones. It highlights the role of scientists who left essential prints in this history of scientific ideas. The book shows how the formidable developments that blossomed in the twentieth century (and perused in a previous book of the author in the same Springer Series: "Continuum Mechanics through the Twentieth Century", Springer 2013) found rich compost in the constructive foundational achievements of the eighteenth and nineteenth centuries. The pre-WWI situation is well summarized by a thorough analysis of treatises (Appell, Hellinger) published at that time. English translations by the author of most critical texts in French or German are given to the benefit of the readers.
This book is a useful overview of results in multivariate probability distributions and multivariate analysis as well as a reference to harmonic analysis on symmetric cones adapted to the needs of researchers in analysis and probability theory.
This comprehensive textbook is intended for a two-semester sequence in analysis. The first four chapters present a practical introduction to analysis by using the tools and concepts of calculus.The last five chapters present a first course in analysis. The presentation is clear and concise, allowing students to master the calculus tools that are crucial in understanding analysis. "From Calculus to Analysis "prepares readers for their first analysis course-important because many undergraduate programs traditionally require such a course. Undergraduates and some advanced high-school seniors will find this text a useful and pleasant experience in the classroom or as a self-study guide. The only prerequisite is a standard calculus course."
This book has grown from notes used by the authors to instruct fast transform classes. One class was sponsored by the Training Department of Rockwell International, and another was sponsored by the Department of Electrical Engineering of The University of Texas at Arlington. Some of the material was also used in a short course sponsored by the University of Southern California. The authors are indebted to their students for motivating the writing of this book and for suggestions to improve it. |
You may like...
Calculus - Early Transcendentals, Metric…
James Stewart, Saleem Watson, …
Hardcover
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R2,831
Discovery Miles 28 310
|