![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition provides you with the strongest foundation for a STEM future. James Stewart's Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, coauthors Daniel Clegg and Saleem Watson continue his legacy, and their careful refinements retain Stewart's clarity of exposition and make the 9th Edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
As technology progresses, we are able to handle larger and larger datasets. At the same time, monitoring devices such as electronic equipment and sensors (for registering images, temperature, etc.) have become more and more sophisticated. This high-tech revolution offers the opportunity to observe phenomena in an increasingly accurate way by producing statistical units sampled over a finer and finer grid, with the measurement points so close that the data can be considered as observations varying over a continuum. Such continuous (or functional) data may occur in biomechanics (e.g. human movements), chemometrics (e.g. spectrometric curves), econometrics (e.g. the stock market index), geophysics (e.g. spatio-temporal events such as El Nino or time series of satellite images), or medicine (electro-cardiograms/electro-encephalograms). It is well known that standard multivariate statistical analyses fail with functional data. However, the great potential for applications has encouraged new methodologies able to extract relevant information from functional datasets. This Handbook aims to present a state of the art exploration of this high-tech field, by gathering together most of major advances in this area. Leading international experts have contributed to this volume with each chapter giving the key original ideas and comprehensive bibliographical information. The main statistical topics (classification, inference, factor-based analysis, regression modelling, resampling methods, time series, random processes) are covered in the setting of functional data. The twin challenges of the subject are the practical issues of implementing new methodologies and the theoretical techniques needed to expand the mathematical foundations and toolbox. The volume therefore mixes practical, methodological and theoretical aspects of the subject, sometimes within the same chapter. As a consequence, this book should appeal to a wide audience of engineers, practitioners and graduate students, as well as academic researchers, not only in statistics and probability but also in the numerous related application areas.
Trace and determinant functionals on operator algebras provide a means of constructing invariants in analysis, topology, differential geometry, analytic number theory, and quantum field theory. The consequent developments around such invariants have led to significant advances both in pure mathematics and theoretical physics. As the fundamental tools of trace theory have become well understood and clear general structures have emerged, so the need for specialist texts which explain the basic theoretical principles and computational techniques has become increasingly urgent. Providing a broad account of the theory of traces and determinants on algebras of differential and pseudodifferential operators over compact manifolds, this text is the first to deal with trace theory in general, encompassing a number of the principle applications and backed up by specific computations which set out in detail the nuts-and-bolts of the basic theory. Both the microanalytic approach to traces and determinants via pseudodifferential operator theory and the more computational approach directed by applications in geometric analysis, are developed in a general framework that will be of interest to mathematicians and physicists in a number of different fields.
For one- or two-semester junior or senior level courses in Advanced Calculus, Analysis I, or Real Analysis. This text prepares students for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced students while encouraging and helping weaker students. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing students the motivation behind the mathematics and enabling them to construct their own proofs.
An introduction to statistical data mining, Data Analysis and Data Mining is both textbook and professional resource. Assuming only a basic knowledge of statistical reasoning, it presents core concepts in data mining and exploratory statistical models to students and professional statisticians-both those working in communications and those working in a technological or scientific capacity-who have a limited knowledge of data mining. This book presents key statistical concepts by way of case studies, giving readers the benefit of learning from real problems and real data. Aided by a diverse range of statistical methods and techniques, readers will move from simple problems to complex problems. Through these case studies, authors Adelchi Azzalini and Bruno Scarpa explain exactly how statistical methods work; rather than relying on the "push the button" philosophy, they demonstrate how to use statistical tools to find the best solution to any given problem. Case studies feature current topics highly relevant to data mining, such web page traffic; the segmentation of customers; selection of customers for direct mail commercial campaigns; fraud detection; and measurements of customer satisfaction. Appropriate for both advanced undergraduate and graduate students, this much-needed book will fill a gap between higher level books, which emphasize technical explanations, and lower level books, which assume no prior knowledge and do not explain the methodology behind the statistical operations.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
This book contains the latest developments of the theory of discontinuous groups acting on homogenous spaces, from basic concepts to a comprehensive exposition. It develops the newest approaches and methods in the deformation theory of topological modules and unitary representations and focuses on the geometry of discontinuous groups of solvable Lie groups and their compact extensions. It also presents proofs of recent results, computes fundamental examples, and serves as an introduction and reference for students and experienced researchers in Lie theory, discontinuous groups, and deformation (and moduli) spaces.
Theoretical advances and new foundations have been reported at the Conference for more than 40 years which has helped expand the range of applications as well as the type of materials in response to industrial and professional requirements. Since the conference started it has attracted high quality papers that report further advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences, for instance. As design, analysis and manufacture become more integrated, the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications, which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The included papers originate from the 46th conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM) which acts as a forum to discuss new ideas and critically compare results before the solution and tools are released to the end users.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
Study smarter and stay on top of your calculus course with the bestselling Schaum's Outline-now with the NEW Schaum's app and website! Schaum's Outline of Calculus, Seventh Edition is the go-to study guide for hundreds of thousands of high school and college students enrolled in calculus courses-including Calculus, Calculus II, Calculus III, AP Calculus and Precalculus. With an outline format that facilitates quick and easy review, Schaum's Outline of Calculus, Seventh Edition helps you understand basic concepts and get the extra practice you need to excel in these courses. Chapters include Linear Coordinate Systems, Functions, Limits, Rules for Differentiating Functions, Law of the Mean, Inverse Trigonometric Functions, The Definite Integral, Space Vectors, Directional Derivatives, and much, much more. Features: NEW to this edition: the new Schaum's app and website! 1,105 problems solved step by step 30 problem-solving videos online Outline format supplies a concise guide to the standard college course in calculus Clear, concise explanations covers all course fundamentals Hundreds of additional practice problems Supports the major leading textbooks in calculus Appropriate for the following courses: Calculus I, Calculus II, Calculus III, AP Calculus, Precalculus
This book is a general introduction to the statistical analysis of networks, and can serve both as a research monograph and as a textbook. Numerous fundamental tools and concepts needed for the analysis of networks are presented, such as network modeling, community detection, graph-based semi-supervised learning and sampling in networks. The description of these concepts is self-contained, with both theoretical justifications and applications provided for the presented algorithms.Researchers, including postgraduate students, working in the area of network science, complex network analysis, or social network analysis, will find up-to-date statistical methods relevant to their research tasks. This book can also serve as textbook material for courses related to thestatistical approach to the analysis of complex networks.In general, the chapters are fairly independent and self-supporting, and the book could be used for course composition "a la carte". Nevertheless, Chapter 2 is needed to a certain degree for all parts of the book. It is also recommended to read Chapter 4 before reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3 can also be helpful before reading Chapters 5 and 7. As prerequisites for reading this book, a basic knowledge in probability, linear algebra and elementary notions of graph theory is advised. Appendices describing required notions from the above mentioned disciplines have been added to help readers gain further understanding.
This book provides a concrete introduction to a number of topics in harmonic analysis, accessible at the early graduate level or, in some cases, at an upper undergraduate level. Necessary prerequisites to using the text are rudiments of the Lebesgue measure and integration on the real line. It begins with a thorough treatment of Fourier series on the circle and their applications to approximation theory, probability, and plane geometry (the isoperimetric theorem). Frequently, more than one proof is offered for a given theorem to illustrate the multiplicity of approaches. The second chapter treats the Fourier transform on Euclidean spaces, especially the author's results in the three-dimensional piecewise smooth case, which is distinct from the classical Gibbs - Wilbraham phenomenon of one-dimensional Fourier analysis. The Poisson summation formula treated in Chapter 3 provides an elegant connection between Fourier series on the circle and Fourier transforms on the real line, culminating in Landau's asymptotic formulas for lattice points on a large sphere. Much of modern harmonic analysis is concerned with the behavior of various linear operators on the Lebesgue spaces Lp (Rn). Chapter 4 gives a gentle introduction to these results, using the Riesz - Thorin theorem and the Marcinkiewicz interpolation formula. One of the long-time users of Fourier analysis is probability theory. In Chapter 5 the central limit theorem, iterated log theorem, and Berry - Esseen theorems are developed using the suitable Fourier-analytic tools. The final chapter furnishes a gentle introduction to wavelet theory, depending only on the L2 theory of the Fourier transform (the Plancherel theorem). The basic notions of scale and location parameters demonstrate the flexibility of the wavelet approach to harmonic analysis. The text contains numerous examples and more than 200 exercises, each located in close proximity to the related theoretical material.
For a two-semester or three-semester course in Calculus for Life Sciences. Calculus for Biology and Medicine, Third Edition, addresses the needs of students in the biological sciences by showing them how to use calculus to analyze natural phenomena-without compromising the rigorous presentation of the mathematics. While the table of contents aligns well with a traditional calculus text, all the concepts are presented through biological and medical applications. The text provides students with the knowledge and skills necessary to analyze and interpret mathematical models of a diverse array of phenomena in the living world. Since this text is written for college freshmen, the examples were chosen so that no formal training in biology is needed.
Jump-start your career as a data scientist--learn to develop datasets for exploration, analysis, and machine learning SQL for Data Scientists: A Beginner's Guide for Building Datasets for Analysis is a resource that's dedicated to the Structured Query Language (SQL) and dataset design skills that data scientists use most. Aspiring data scientists will learn how to how to construct datasets for exploration, analysis, and machine learning. You can also discover how to approach query design and develop SQL code to extract data insights while avoiding common pitfalls. You may be one of many people who are entering the field of Data Science from a range of professions and educational backgrounds, such as business analytics, social science, physics, economics, and computer science. Like many of them, you may have conducted analyses using spreadsheets as data sources, but never retrieved and engineered datasets from a relational database using SQL, which is a programming language designed for managing databases and extracting data. This guide for data scientists differs from other instructional guides on the subject. It doesn't cover SQL broadly. Instead, you'll learn the subset of SQL skills that data analysts and data scientists use frequently. You'll also gain practical advice and direction on "how to think about constructing your dataset." Gain an understanding of relational database structure, query design, and SQL syntax Develop queries to construct datasets for use in applications like interactive reports and machine learning algorithms Review strategies and approaches so you can design analytical datasets Practice your techniques with the provided database and SQL code In this book, author Renee Teate shares knowledge gained during a 15-year career working with data, in roles ranging from database developer to data analyst to data scientist. She guides you through SQL code and dataset design concepts from an industry practitioner's perspective, moving your data scientist career forward!
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Leonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of n that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
Calculus Deconstructed is a thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous exposure to calculus techniques but not to methods of proof. This book is appropriate for a beginning Honors Calculus course assuming high school calculus or a ""bridge course"" using basic analysis to motivate and illustrate mathematical rigor. It can serve as a combination textbook and reference book for individual self-study. Standard topics and techniques in single-variable calculus are presented in context of a coherent logical structure, building on familiar properties of real numbers and teaching methods of proof by example along the way. Numerous examples reinforce both practical and theoretical understanding, and extensive historical notes explore the arguments of the originators of the subject. No previous experience with mathematical proof is assumed: rhetorical strategies and techniques of proof (reductio ad absurdum, induction, contrapositives, etc.) are introduced by example along the way. Between the text and exercises, proofs are available for all the basic results of calculus for functions of one real variable.
Formal analysis is the study of formal power series, formal Laurent series, formal root series, and other formal series or formal functionals. This book is the first comprehensive presentation of the topic that systematically introduces formal analysis, including its algebraic, analytic, and topological structure, along with various applications.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere. |
![]() ![]() You may like...
Dear Ijeawele Feminist Manifesto In…
Chimamanda Ngozi Adichie
Paperback
![]()
Recent Advances in Global…
Shamsul Bahri Abd Razak, Tuan Zainazor Tuan Chilek, …
Hardcover
R5,776
Discovery Miles 57 760
|