Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
With its clear and simple writing style, PRECALCULUS: MATHEMATICS FOR CALCULUS, 7E, INTERNATIONAL METRIC EDITION, will give you a solid foundation in the principles of mathematical thinking. Problem solving and mathematical modeling are reinforced throughout. This comprehensive, evenly paced book provides complete coverage of the function concept and integrates substantial graphing calculator materials that help you develop insight into mathematical ideas. Online resources available with the text give you the practice you need to improve your grade in the course.
CALCULUS: EARLY TRANSCENDENTALS, Metric, 9th Edition provides you with the strongest foundation for a STEM future. James Stewart's Calculus, Metric series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, coauthors Daniel Clegg and Saleem Watson continue his legacy, and their careful refinements retain Stewart's clarity of exposition and make the 9th Edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
For one- or two-semester junior or senior level courses in Advanced Calculus, Analysis I, or Real Analysis. This text prepares students for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced students while encouraging and helping weaker students. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing students the motivation behind the mathematics and enabling them to construct their own proofs.
Thomas' Calculus: Early Transcendentals goes beyond memorizing formulas and routine procedures to help you develop deeper understanding. It guides you to a level of mathematical proficiency, with additional support if needed through its clear and intuitive explanations, current applications and generalized concepts. Technology exercises in every section use the calculator or computer for solving problems, and Computer Explorations offer exercises requiring a computer algebra system like Maple or Mathematica. The 15th Edition adds exercises, revises figures and language for clarity, and updates many applications.
Theoretical advances and new foundations have been reported at the Conference for more than 40 years which has helped expand the range of applications as well as the type of materials in response to industrial and professional requirements. Since the conference started it has attracted high quality papers that report further advances in techniques that reduce or eliminate the type of meshes associated with finite elements or finite differences, for instance. As design, analysis and manufacture become more integrated, the chances are that the users will be less aware of the capabilities of the analytical techniques that are at the core of the process. This reinforces the need to retain expertise in certain specialised areas of numerical methods, such as BEM/MRM, to ensure that all new tools perform satisfactorily in the integrated process. The maturity of BEM since 1978 has resulted in a substantial number of industrial applications, which demonstrate the accuracy, robustness and easy use of the technique. Their range still needs to be widened, taking into account the potentialities of the Mesh Reduction techniques in general. The included papers originate from the 46th conference on Boundary Elements and other Mesh Reduction Methods (BEM/MRM) which acts as a forum to discuss new ideas and critically compare results before the solution and tools are released to the end users.
Study smarter and stay on top of your calculus course with the bestselling Schaum's Outline-now with the NEW Schaum's app and website! Schaum's Outline of Calculus, Seventh Edition is the go-to study guide for hundreds of thousands of high school and college students enrolled in calculus courses-including Calculus, Calculus II, Calculus III, AP Calculus and Precalculus. With an outline format that facilitates quick and easy review, Schaum's Outline of Calculus, Seventh Edition helps you understand basic concepts and get the extra practice you need to excel in these courses. Chapters include Linear Coordinate Systems, Functions, Limits, Rules for Differentiating Functions, Law of the Mean, Inverse Trigonometric Functions, The Definite Integral, Space Vectors, Directional Derivatives, and much, much more. Features: NEW to this edition: the new Schaum's app and website! 1,105 problems solved step by step 30 problem-solving videos online Outline format supplies a concise guide to the standard college course in calculus Clear, concise explanations covers all course fundamentals Hundreds of additional practice problems Supports the major leading textbooks in calculus Appropriate for the following courses: Calculus I, Calculus II, Calculus III, AP Calculus, Precalculus
This book is a general introduction to the statistical analysis of networks, and can serve both as a research monograph and as a textbook. Numerous fundamental tools and concepts needed for the analysis of networks are presented, such as network modeling, community detection, graph-based semi-supervised learning and sampling in networks. The description of these concepts is self-contained, with both theoretical justifications and applications provided for the presented algorithms.Researchers, including postgraduate students, working in the area of network science, complex network analysis, or social network analysis, will find up-to-date statistical methods relevant to their research tasks. This book can also serve as textbook material for courses related to thestatistical approach to the analysis of complex networks.In general, the chapters are fairly independent and self-supporting, and the book could be used for course composition "a la carte". Nevertheless, Chapter 2 is needed to a certain degree for all parts of the book. It is also recommended to read Chapter 4 before reading Chapters 5 and 6, but this is not absolutely necessary. Reading Chapter 3 can also be helpful before reading Chapters 5 and 7. As prerequisites for reading this book, a basic knowledge in probability, linear algebra and elementary notions of graph theory is advised. Appendices describing required notions from the above mentioned disciplines have been added to help readers gain further understanding.
This volume presents lectures given at the Wisła 20-21 Winter School and Workshop: Groups, Invariants, Integrals, and Mathematical Physics, organized by the Baltic Institute of Mathematics. The lectures were dedicated to differential invariants – with a focus on Lie groups, pseudogroups, and their orbit spaces – and Poisson structures in algebra and geometry and are included here as lecture notes comprising the first two chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and category theory. Specific topics covered include: The multisymplectic and variational nature of Monge-Ampère equations in dimension four Integrability of fifth-order equations admitting a Lie symmetry algebra Applications of the van Kampen theorem for groupoids to computation of homotopy types of striped surfaces A geometric framework to compare classical systems of PDEs in the category of smooth manifolds Groups, Invariants, Integrals, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry and category theory is assumed.
This book aims to provide an overview of the special functions of fractional calculus and their applications in diffusion and random search processes. The book contains detailed calculations for various examples of anomalous diffusion, random search and stochastic resetting processes, which can be easily followed by the reader, who will be able to reproduce the obtained results. The book will be intended for advanced undergraduate and graduate students and researchers in physics, mathematics and other natural sciences due to the various examples which will be provided in the book.
For a two-semester or three-semester course in Calculus for Life Sciences. Calculus for Biology and Medicine, Third Edition, addresses the needs of students in the biological sciences by showing them how to use calculus to analyze natural phenomena-without compromising the rigorous presentation of the mathematics. While the table of contents aligns well with a traditional calculus text, all the concepts are presented through biological and medical applications. The text provides students with the knowledge and skills necessary to analyze and interpret mathematical models of a diverse array of phenomena in the living world. Since this text is written for college freshmen, the examples were chosen so that no formal training in biology is needed.
Boundary value problems on bounded or unbounded intervals, involving two or more coupled systems of nonlinear differential and integral equations with full nonlinearities, are scarce in the literature. The present work by the authors desires to fill this gap. The systems covered here include differential and integral equations of Hammerstein-type with boundary constraints, on bounded or unbounded intervals. These are presented in several forms and conditions (three points, mixed, with functional dependence, homoclinic and heteroclinic, amongst others). This would be the first time that differential and integral coupled systems are studied systematically. The existence, and in some cases, the localization of the solutions are carried out in Banach space, following several types of arguments and approaches such as Schauder's fixed-point theorem or Guo-Krasnosel'ski? fixed-point theorem in cones, allied to Green's function or its estimates, lower and upper solutions, convenient truncatures, the Nagumo condition presented in different forms, the concept of equiconvergence, Caratheodory functions, and sequences. Moreover, the final part in the volume features some techniques on how to relate differential coupled systems to integral ones, which require less regularity. Parallel to the theoretical explanation of this work, there is a range of practical examples and applications involving real phenomena, focusing on physics, mechanics, biology, forestry, and dynamical systems, which researchers and students will find useful.
SINGLE VARIABLE CALCULUS, Metric, 9th Edition, provides you with the strongest foundation for a STEM future. James Stewart's Calculus series is the top-seller in the world because of its problem-solving focus, mathematical precision and accuracy, and outstanding examples and problem sets. Selected and mentored by Stewart, Daniel Clegg and Saleem Watson continue his legacy and their careful refinements retain Stewart's clarity of exposition and make the 9th edition an even more usable learning tool. The accompanying WebAssign includes helpful learning support and new resources like Explore It interactive learning modules. Showing that Calculus is both practical and beautiful, the Stewart approach and WebAssign resources enhance understanding and build confidence for millions of students worldwide.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
This unique book gathers various scientific and mathematical approaches to and descriptions of the natural and physical world stemming from a broad range of mathematical areas - from model systems, differential equations, statistics, and probability - all of which scientifically and mathematically reveal the inherent beauty of natural and physical phenomena. Topics include Archimedean and Non-Archimedean approaches to mathematical modeling; thermography model with application to tungiasis inflammation of the skin; modeling of a tick-Killing Robot; various aspects of the mathematics for Covid-19, from simulation of social distancing scenarios to the evolution dynamics of the coronavirus in some given tropical country to the spatiotemporal modeling of the progression of the pandemic. Given its scope and approach, the book will benefit researchers and students of mathematics, the sciences and engineering, and everyone else with an appreciation for the beauty of nature. The outcome is a mathematical enrichment of nature's beauty in its various manifestations. This volume honors Dr. John Adam, a Professor at Old Dominion University, USA, for his lifetime achievements in the fields of mathematical modeling and applied mathematics. Dr. Adam has published over 110 papers and authored several books.
In addition to expanding and clarifying a number of sections of the first edition, it generalizes the analysis that eliminates the noncausal pre-acceleration so that it applies to removing any pre-deceleration as well. It also introduces a robust power series solution to the equation of motion that produces an extremely accurate solution to problems such as the motion of electrons in uniform magnetic fields.
Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian Leonard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of n that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939-2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
This monograph develops an innovative approach that utilizes the Birman-Schwinger principle from quantum mechanics to investigate stability properties of steady state solutions in galactic dynamics. The opening chapters lay the framework for the main result through detailed treatments of nonrelativistic galactic dynamics and the Vlasov-Poisson system, the Antonov stability estimate, and the period function $T_1$. Then, as the main application, the Birman-Schwinger type principle is used to characterize in which cases the "best constant" in the Antonov stability estimate is attained. The final two chapters consider the relation to the Guo-Lin operator and invariance properties for the Vlasov-Poisson system, respectively. Several appendices are also included that cover necessary background material, such as spherically symmetric models, action-angle variables, relevant function spaces and operators, and some aspects of Kato-Rellich perturbation theory. A Birman-Schwinger Principle in Galactic Dynamics will be of interest to researchers in galactic dynamics, kinetic theory, and various aspects of quantum mechanics, as well as those in related areas of mathematical physics and applied mathematics.
This book consists of three volumes. The first volume contains introductory accounts of topological dynamical systems, fi nite-state symbolic dynamics, distance expanding maps, and ergodic theory of metric dynamical systems acting on probability measure spaces, including metric entropy theory of Kolmogorov and Sinai. More advanced topics comprise infi nite ergodic theory, general thermodynamic formalism, topological entropy and pressure. Thermodynamic formalism of distance expanding maps and countable-alphabet subshifts of fi nite type, graph directed Markov systems, conformal expanding repellers, and Lasota-Yorke maps are treated in the second volume, which also contains a chapter on fractal geometry and its applications to conformal systems. Multifractal analysis and real analyticity of pressure are also covered. The third volume is devoted to the study of dynamics, ergodic theory, thermodynamic formalism and fractal geometry of rational functions of the Riemann sphere.
Formal analysis is the study of formal power series, formal Laurent series, formal root series, and other formal series or formal functionals. This book is the first comprehensive presentation of the topic that systematically introduces formal analysis, including its algebraic, analytic, and topological structure, along with various applications.
This proceedings volume gathers together selected works from the 2018 "Asymptotic, Algebraic and Geometric Aspects of Integrable Systems" workshop that was held at TSIMF Yau Mathematical Sciences Center in Sanya, China, honoring Nalini Joshi on her 60th birthday. The papers cover recent advances in asymptotic, algebraic and geometric methods in the study of discrete integrable systems. The workshop brought together experts from fields such as asymptotic analysis, representation theory and geometry, creating a platform to exchange current methods, results and novel ideas. This volume's articles reflect these exchanges and can be of special interest to a diverse group of researchers and graduate students interested in learning about current results, new approaches and trends in mathematical physics, in particular those relevant to discrete integrable systems. |
You may like...
Orthogonal Polynomials: Current Trends…
Francisco Marcellan, Edmundo J. Huertas
Hardcover
R4,271
Discovery Miles 42 710
Nonlinear Problems with Lack of…
Giovanni Molica Bisci, Patrizia Pucci
Hardcover
R3,854
Discovery Miles 38 540
Ergodic Theory - Finite and Infinite…
Mariusz Urbanski, Mario Roy, …
Hardcover
R4,435
Discovery Miles 44 350
Advances in Fluid Dynamics with emphasis…
Santiago Hernandez, Peter Vorobieff
Hardcover
R2,659
Discovery Miles 26 590
Recent Developments in Nonlocal Theory
Giampiero Palatucci, Tuomo Kuusi
Hardcover
R4,429
Discovery Miles 44 290
|