![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem. The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this approach requires a small additional effort by the student, it will be compensated by a substantial advantage in the development of the theory, and later on when learning about more advanced topics. The text guides the reader with clarity in the discovery of the many different subjects, providing all necessary tools – no preliminaries are needed. Both students and their instructors will benefit from this book and its novel approach, turning their course in mathematical analysis into a gratifying and successful experience.
The analysis of recurrences in dynamical systems by using recurrence plots and their quantification is still an emerging field. Over the past decades recurrence plots have proven to be valuable data visualization and analysis tools in the theoretical study of complex, time-varying dynamical systems as well as in various applications in biology, neuroscience, kinesiology, psychology, physiology, engineering, physics, geosciences, linguistics, finance, economics, and other disciplines. This multi-authored book intends to comprehensively introduce and showcase recent advances as well as established best practices concerning both theoretical and practical aspects of recurrence plot based analysis. Edited and authored by leading researcher in the field, the various chapters address an interdisciplinary readership, ranging from theoretical physicists to application-oriented scientists in all data-providing disciplines.
Advanced Calculus: Theory and Practice, Second Edition offers a text for a one- or two-semester course on advanced calculus or analysis. The text improves students' problem-solving and proof-writing skills, familiarizes them with the historical development of calculus concepts, and helps them understand the connections among different topics. The book explains how various topics in calculus may seem unrelated but have common roots. Emphasizing historical perspectives, the text gives students a glimpse into the development of calculus and its ideas from the age of Newton and Leibniz to the twentieth century. Nearly 300 examples lead to important theorems. Features of the Second Edition: Improved Organization. Chapters are reorganized to address common preferences. Enhanced Coverage of Axiomatic Systems. A section is added to include Peano's system of axioms for the set of natural numbers and their use in developing the well-known properties of the set N. Expanded and Organized Exercise Collection. There are close to 1,000 new exercises, many of them with solutions or hints. Exercises are classified based on the level of difficulty. Computation-oriented exercises are paired and solutions or hints provided for the odd-numbered questions. Enrichment Material. Historical facts and biographies of over 60 mathematicians. Illustrations. Thirty-five new illustrations are added in order to guide students through examples or proofs. About the Author: John Srdjan Petrovic is a professor at Western Michigan University.
George Andrews is one of the most influential figures in number theory and combinatorics. In the theory of partitions and q-hypergeometric series and in the study of Ramanujan's work, he is the unquestioned leader. To suitably honor him during his 70th birthday year, an International Conference on Combinatory Analysis was held at The Pennsylvania State University during December 5-7, 2008. Three issues of the Ramanujan Journal comprising Volume 23 were published in 2010 as the refereed proceedings of that conference. The Ramanujan Journal was proud to bring out that volume honoring one of its Founding Editors. In view of the great interest that the mathematical community has in the influential work of Andrews, it was decided to republish Volume 23 of The Ramanujan Journal in this book form, so that the refereed proceedings are more readily available for those who do not subscribe to the journal but wish to possess this volume. As a fitting tribute to George Andrews, many speakers from the conference contributed research papers to this volume which deals with a broad range of areas that signify the research interests of George Andrews. In reproducing Volume 23 of The Ramanujan Journal in this book form, we have included two papers-one by Hei-Chi Chan and Shaun Cooper, and another by Ole Warnaar-which were intended for Volume 23 of The Ramanujan Journal, but appeared in other issues. The enormous productivity of George Andrews remains unabated in spite of the passage of time. His immensely fertile mind continues to pour forth seminal ideas year after year. He has two research papers in this volume. May his eternal youthfulness and his magnificent research output continue to inspire and influence researchers in the years ahead.
Focuses on the latest research in Graph Theory Provides recent research findings that are occurring in this field Discusses the advanced developments and gives insights on an international and transnational level Identifies the gaps in the results Presents forthcoming international studies and researches, long with applications in Networking, Computer Science, Chemistry, Biological Sciences, etc.
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
This book gathers twenty-two papers presented at the second NLAGA-BIRS Symposium, which was held at Cap Skirring and at the Assane Seck University in Ziguinchor, Senegal, on January 25-30, 2022. The five-day symposium brought together African experts on nonlinear analysis and geometry and their applications, as well as their international partners, to present and discuss mathematical results in various areas. The main goal of the NLAGA project is to advance and consolidate the development of these mathematical fields in West and Central Africa with a focus on solving real-world problems such as coastal erosion, pollution, and urban network and population dynamics problems. The book addresses a range of topics related to partial differential equations, geometric analysis, geometric structures, dynamics, optimization, inverse problems, complex analysis, algebra, algebraic geometry, control theory, stochastic approximations, and modelling.
We have classified the articles presented here in two Sections according to their general content. In Part I we have included papers which deal with statistical mechanics, math ematical aspects of dynamical systems and sthochastic effects in nonequilibrium systems. Part II is devoted mainly to instabilities and self-organization in extended nonequilibrium systems. The study of partial differential equations by numerical and analytic methods plays a great role here and many works are related to this subject. Most recent developments in this fascinating and rapidly growing area are discussed. PART I STATISTICAL MECHANICS AND RELATED TOPICS NONEQUILIBRIUM POTENTIALS FOR PERIOD DOUBLING R. Graham and A. Hamm Fachbereich Physik, Universitiit Gesamthochschule Essen D4300 Essen 1 Germany ABSTRACT. In this lecture we consider the influence of weak stochastic perturbations on period doubling using nonequilibrium potentials, a concept which is explained in section 1 and formulated for the case of maps in section 2. In section 3 nonequilibrium potentials are considered for the family of quadratic maps (a) at the Feigenbaum 'attractor' with Gaussian noise, (b) for more general non Gaussian noise, and (c) for the case of a strange repeller. Our discussion will be informal. A more detailed account of this and related material can be found in our papers [1-3] and in the reviews [4, 5], where further references to related work are also given. 1.
Image Processing and Acquisition using Python provides readers with a sound foundation in both image acquisition and image processing-one of the first books to integrate these topics together. By improving readers' knowledge of image acquisition techniques and corresponding image processing, the book will help them perform experiments more effectively and cost efficiently as well as analyze and measure more accurately. Long recognized as one of the easiest languages for non-programmers to learn, Python is used in a variety of practical examples. A refresher for more experienced readers, the first part of the book presents an introduction to Python, Python modules, reading and writing images using Python, and an introduction to images. The second part discusses the basics of image processing, including pre/post processing using filters, segmentation, morphological operations, and measurements. The second part describes image acquisition using various modalities, such as x-ray, CT, MRI, light microscopy, and electron microscopy. These modalities encompass most of the common image acquisition methods currently used by researchers in academia and industry. Features Covers both the physical methods of obtaining images and the analytical processing methods required to understand the science behind the images. Contains many examples, detailed derivations, and working Python examples of the techniques. Offers practical tips on image acquisition and processing. Includes numerous exercises to test the reader's skills in Python programming and image processing, with solutions to selected problems, example programs, and images available on the book's web page. New to this edition Machine learning has become an indispensable part of image processing and computer vision, so in this new edition two new chapters are included: one on neural networks and the other on convolutional neural networks. A new chapter on affine transform and many new algorithms. Updated Python code aligned to the latest version of modules.
Numerical Methods for Fractional Calculus presents numerical methods for fractional integrals and fractional derivatives, finite difference methods for fractional ordinary differential equations (FODEs) and fractional partial differential equations (FPDEs), and finite element methods for FPDEs. The book introduces the basic definitions and properties of fractional integrals and derivatives before covering numerical methods for fractional integrals and derivatives. It then discusses finite difference methods for both FODEs and FPDEs, including the Euler and linear multistep methods. The final chapter shows how to solve FPDEs by using the finite element method. This book provides efficient and reliable numerical methods for solving fractional calculus problems. It offers a primer for readers to further develop cutting-edge research in numerical fractional calculus. MATLAB (R) functions are available on the book's CRC Press web page.
Model theory is one of the central branches of mathematical logic. The field has evolved rapidly in the last few decades. This book is an introduction to current trends in model theory, and contains a collection of articles authored by top researchers in the field. It is intended as a reference for students as well as senior researchers.
This monograph presents in a unified manner the use of the Morse index, and especially its connections to the maximum principle, in the study of nonlinear elliptic equations. The knowledge or a bound on the Morse index of a solution is a very important qualitative information which can be used in several ways for different problems, in order to derive uniqueness, existence or nonexistence, symmetry, and other properties of solutions.
Hyperbolic partial di?erential equations describe phenomena of material or wave transport in the applied sciences. Despite of considerable progress in the past decades,the mathematical theory still faces fundamental questions concerningthe in?uenceofnonlinearitiesormultiple characteristicsofthe hyperbolicoperatorsor geometric properties of the domain in which the evolution process is considered. The current volume is dedicated to modern topics of the theory of hyperbolic equations such as evolution equations - multiple characteristics - propagation phenomena - global existence - in?uence of nonlinearities. It is addressed both to specialists and to beginners in these ?elds. The c- tributions are to a large extent self-contained. The ?rst contribution is written by Piero D'Ancona and Vladimir Georgiev. Piero D'Ancona graduated in 1982 from Scuola Normale Superiore of Pisa. Since 1997he isfull professorat the Universityof Rome1. Vladimir Georgievgraduated in1981fromtheUniversityofSo?a.Since2000heisfullprofessorattheUniversity of Pisa. The ?rst part of the paper treats the existence of low regularity solutions to the local Cauchy problem associated with wave maps. This introductory part f- lows the classical approach developed by Bourgain, Klainerman, Machedon which yields local well-posedness results for supercritical regularity of the initial data. The nonuniqueness results are establishedbytheauthors under the assumption that the regularity of the initial data is subcritical. The approach is based on the use of self-similar solutions. The third part treats the ill-posedness results of the Cauchy problem for the critical Sobolev regularity. The approach is based on the e?ective application of the properties of a special family of solutions associated with geodesics on the target manifold.
Intended as a self-contained introduction to measure theory, this textbook provides a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition provides the reader with a broad perspective on measure theory through additional topics such as the Kurzweil-Henstock integral, the Banach-Tarski paradox, a proof of the existence of liftings, the Daniell integral. In addition, applications and introductions to other related areas such as measure-theoretic probability theory are also included in this new edition. Measure Theory provides a solid background for study in both harmonic analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites are courses in topology and analysis, and the appendices present a thorough review of essential background material.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
An Introduction to Nonlinear Analysis: Theory is an overview of some basic, important aspects of Nonlinear Analysis, with an emphasis on those not included in the classical treatment of the field. Today Nonlinear Analysis is a very prolific part of modern mathematical analysis, with fascinating theory and many different applications ranging from mathematical physics and engineering to social sciences and economics. Topics covered in this book include the necessary background material from topology, measure theory and functional analysis (Banach space theory). The text also deals with multivalued analysis and basic features of nonsmooth analysis, providing a solid background for the more applications-oriented material of the book An Introduction to Nonlinear Analysis: Applications by the same authors. The book is self-contained and accessible to the newcomer, complete with numerous examples, exercises and solutions. It is a valuable tool, not only for specialists in the field interested in technical details, but also for scientists entering Nonlinear Analysis in search of promising directions for research.
The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $\epsilon \leq c_0\mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t \rightarrow \infty $. For times $t \gtrsim \mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ""2.5 dimensional'' streamwise-independent solutions referred to as streaks.
It is well-known that modern stochastic calculus has been exhaustively developed under usual conditions. Despite such a well-developed theory, there is evidence to suggest that these very convenient technical conditions cannot necessarily be fulfilled in real-world applications. Optional Processes: Theory and Applications seeks to delve into the existing theory, new developments and applications of optional processes on "unusual" probability spaces. The development of stochastic calculus of optional processes marks the beginning of a new and more general form of stochastic analysis. This book aims to provide an accessible, comprehensive and up-to-date exposition of optional processes and their numerous properties. Furthermore, the book presents not only current theory of optional processes, but it also contains a spectrum of applications to stochastic differential equations, filtering theory and mathematical finance. Features Suitable for graduate students and researchers in mathematical finance, actuarial science, applied mathematics and related areas Compiles almost all essential results on the calculus of optional processes in unusual probability spaces Contains many advanced analytical results for stochastic differential equations and statistics pertaining to the calculus of optional processes Develops new methods in finance based on optional processes such as a new portfolio theory, defaultable claim pricing mechanism, etc.
This text offers a selection of papers on singularity theory presented at the Sixth Workshop on Real and Complex Singularities held at ICMC-USP, Brazil. It should help students and specialists to understand results that illustrate the connections between singularity theory and related fields. The authors discuss irreducible plane curve singularities, openness and multitransversality, the distribution Afs and the real asymptotic spectrum, deformations of boundary singularities and non-crystallographic coxeter groups, transversal Whitney topology and singularities of Haefliger foliations, the topology of hypersurface singularities, polar multiplicities and equisingularity of map germs from C3 to C4, and topological invariants of stable maps from a surface to the plane from a global viewpoint.
This text provides an introduction to basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas: for instance, the existence, uniqueness, and smoothness theorems for differential equations and the flow of a vector field; the basic theory of vector bundles including the existence of tubular neighborhoods for a submanifold; the calculus of differential forms; basic notions of symplectic manifolds, including the canonical 2-form; sprays and covariant derivatives for Riemannian and pseudo-Riemannian manifolds; applications to the exponential map, including the Cartan-Hadamard theorem and the first basic theorem of calculus of variations. Although the book grew out of the author's earlier book "Differential and Riemannian Manifolds", the focus has now changed from the general theory of manifolds to general differential geometry, and includes new chapters on Jacobi lifts, tensorial splitting of the double tangent bundle, curvature and the variation formula, a generalization of the Cartan-Hadamard theorem, the semiparallelogram law of Bruhat-Tits and its equivalence with seminegative curvature and the exponential map distance increasing property, a major example of seminegative curvature (the space of positive definite symmetric real matrices), automorphisms and symmetries, and immersions and submersions. These are all covered for infinite-dimensional manifolds, modeled on Banach and Hilbert Spaces, at no cost in complications, and some gain in the elegance of the proofs. In the finite-dimensional case, differential forms of top degree are discussed, leading to Stokes' theorem (even for manifolds with singular boundary), and several of its applications to the differential or Riemannian case. Basic formulas concerning the Laplacian are given, exhibiting several of its features in immersions and submersions.
Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang's vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang's own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang's life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.
This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.
Merging logic and mathematics in deductive inference—an innovative, cutting-edge approach. Optimization methods for logical inference? Absolutely, say Vijay Chandru and John Hooker, two major contributors to this rapidly expanding field. And even though "solving logical inference problems with optimization methods may seem a bit like eating sauerkraut with chopsticks. . . it is the mathematical structure of a problem that determines whether an optimization model can help solve it, not the context in which the problem occurs." Presenting powerful, proven optimization techniques for logic inference problems, Chandru and Hooker show how optimization models can be used not only to solve problems in artificial intelligence and mathematical programming, but also have tremendous application in complex systems in general. They survey most of the recent research from the past decade in logic/optimization interfaces, incorporate some of their own results, and emphasize the types of logic most receptive to optimization methods—propositional logic, first order predicate logic, probabilistic and related logics, logics that combine evidence such as Dempster-Shafer theory, rule systems with confidence factors, and constraint logic programming systems. Requiring no background in logic and clearly explaining all topics from the ground up, Optimization Methods for Logical Inference is an invaluable guide for scientists and students in diverse fields, including operations research, computer science, artificial intelligence, decision support systems, and engineering.
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis and differential equations, the book is suitable for graduate students engaged in analytical research on the topics and researchers working on related areas of complex analysis in one or more complex variables. The author first reviews the theory of analytic functions, univalent functions, and conformal mapping before covering various theorems related to the area principle and discussing Loewner theory. He then presents Schiffer's variation method, the bounds for the fourth and higher-order coefficients, various subclasses of univalent functions, generalized convexity and the class of -convex functions, and numerical estimates of the coefficient problem. The book goes on to summarize orthogonal polynomials, explore the de Branges theorem, and address current and emerging developments since the de Branges theorem.
This book collects papers presented at the International Conference on Mathematical Modelling and Computational Intelligence Techniques (ICMMCIT) 2021, held at the Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India, from 10-12 February 2021. Significant contributions from renowned researchers from fields of applied analysis, mathematical modelling and computing techniques have been received for this conference. Chapters emphasize on the research of computational nature focusing on new algorithms, their analysis and numerical results, as well as applications in physical, biological, social, and behavioural sciences. The accepted papers are organized in topical sections as mathematical modelling, image processing, control theory, graphs and networks, and inventory control. |
You may like...
Metrical Theory of Continued Fractions
M. Iosifescu, Cor Kraaikamp
Hardcover
R2,869
Discovery Miles 28 690
Quantum Analogues: From Phase…
William Unruh, Ralf Schutzhold
Hardcover
R1,574
Discovery Miles 15 740
Numerical Analysis - A Mathematical…
Michelle Schatzman, John Taylor
Hardcover
R5,310
Discovery Miles 53 100
Agents and Multi-agent Systems…
Gordan Jezic, Yun-Heh Jessica Chen-Burger, …
Hardcover
R5,201
Discovery Miles 52 010
Mathematics For Engineering Students
Ramoshweu Solomon Lebelo, Radley Kebarapetse Mahlobo
Paperback
R397
Discovery Miles 3 970
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Neural Networks and Statistical Learning
Ke-Lin Du, M.N.S. Swamy
Hardcover
R4,008
Discovery Miles 40 080
|