![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This specialized and authoritative book contains an overview of modern approaches to constructing approximations to solutions of ill-posed operator equations, both linear and nonlinear. These approximation schemes form a basis for implementable numerical algorithms for the stable solution of operator equations arising in contemporary mathematical modeling, and in particular when solving inverse problems of mathematical physics. The book presents in detail stable solution methods for ill-posed problems using the methodology of iterative regularization of classical iterative schemes and the techniques of finite dimensional and finite difference approximations of the problems under study. Special attention is paid to ill-posed Cauchy problems for linear operator differential equations and to ill-posed variational inequalities and optimization problems. The readers are expected to have basic knowledge in functional analysis and differential equations. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems, and also to advanced students in these fields. Contents Introduction Regularization Methods For Linear Equations Finite Difference Methods Iterative Regularization Methods Finite-Dimensional Iterative Processes Variational Inequalities and Optimization Problems
This textbook features applications including a proof of the Fundamental Theorem of Algebra, space filling curves, and the theory of irrational numbers. In addition to the standard results of advanced calculus, the book contains several interesting applications of these results. The text is intended to form a bridge between calculus and analysis. It is based on the authors lecture notes used and revised nearly every year over the last decade. The book contains numerous illustrations and cross references throughout, as well as exercises with solutions at the end of each section.
The theory of approximation of functions is one of the central branches in mathematical analysis and has been developed over a number of decades. This monograph deals with a series of problems related to one of the directions of the theory, namely, the approximation of periodic functions by trigonometric polynomials generated by linear methods of summation of Fourier series. More specific, the following linear methods are investigated: classical methods of Fourier, Fejir, Riesz, and Roginski. For these methods the so-called Kolmogorov-Nikol'skii problem is considered, which consists of finding exact and asymptotically exact qualities for the upper bounds of deviations of polynomials generated by given linear methods on given classes of 2?-periodic functions. Much attention is also given to the multidimensional case. The material presented in this monograph did not lose its importance since the publication of the Russian edition (1981). Moreover, new material has been added and several corrections were made. In this field of mathematics numerous deep results were obtained, many important and complicated problems were solved, and new methods were developed, which can be extremely useful for many mathematicians. All principle problems considered in this monograph are given in the final form, i.e. in the form of exact asymptotic equalities, and, therefore, retain their importance and interest for a long time.
The second edition of this text has sold over 6,000 copies since
publication in 1986 and this revision will make it even more
useful. This is the only book available that is approachable by
"beginners" in this subject. It has become an essential
introduction to the subject for mathematics students, engineers,
physicists, and economists who need to learn how to apply these
vital methods. It is also the only book that thoroughly reviews
certain areas of advanced calculus that are necessary to understand
the subject.
This is the proceedings of the "8th IMACS Seminar on Monte Carlo Methods" held from August 29 to September 2, 2011 in Borovets, Bulgaria, and organized by the Institute of Information and Communication Technologies of the Bulgarian Academy of Sciences in cooperation with the International Association for Mathematics and Computers in Simulation (IMACS). Included are 24 papers which cover all topics presented in the sessions of the seminar: stochastic computation and complexity of high dimensional problems, sensitivity analysis, high-performance computations for Monte Carlo applications, stochastic metaheuristics for optimization problems, sequential Monte Carlo methods for large-scale problems, semiconductor devices and nanostructures. The history of the IMACS Seminar on Monte Carlo Methods goes back to April 1997 when the first MCM Seminar was organized in Brussels: 1st IMACS Seminar, 1997, Brussels, Belgium 2nd IMACS Seminar, 1999, Varna, Bulgaria 3rd IMACS Seminar, 2001, Salzburg, Austria 4th IMACS Seminar, 2003, Berlin, Germany 5th IMACS Seminar, 2005, Tallahassee, USA 6th IMACS Seminar, 2007, Reading, UK 7th IMACS Seminar, 2009, Brussels, Belgium 8th IMACS Seminar, 2011, Borovets, Bulgaria
Foundations of Analysis covers the basics of real analysis for a one- or two-semester course. In a straightforward and concise way, it helps students understand the key ideas and apply the theorems. The book's accessible approach will appeal to a wide range of students and instructors. Each section begins with a boxed introduction that familiarizes students with the upcoming topics and sets the stage for the work to be done. Each section ends with several questions that ask students to review what they have just learned. The text is also scattered with notes pointing out places where different pieces of terminology seem to conflict with each other or where different ideas appear not to fit together properly. In addition, many remarks throughout help put the material in perspective. As with any real analysis text, exercises are powerful and effective learning tools. This book is no exception. Each chapter generally contains at least 50 exercises that build in difficulty, with an exercise set at the end of every section. This allows students to more easily link the exercises to the material in the section.
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
An Introduction to Non-Harmonic Fourier Series, Revised Edition is
an update of a widely known and highly respected classic textbook.
The articles collected in this volume are based on lectures given at the IMA Workshop, "Computational Radiology and Imaging: Therapy and Diagnostics," March 17-21, 1997. Introductory articles by the editors have been added. The focus is on inverse problems involving electromagnetic radiation and particle beams, with applications to X-ray tomography, nuclear medicine, near-infrared imaging, microwave imaging, electron microscopy, and radiation therapy planning. Mathematical and computational tools and models which play important roles in this volume include the X-ray transform and other integral transforms, the linear Boltzmann equation and, for near-infrared imaging, its diffusion approximation, iterative methods for large linear and non-linear least-squares problems, iterative methods for linear feasibility problems, and optimization methods. The volume is intended not only for mathematical scientists and engineers working on these and related problems, but also for non-specialists. It contains much introductory expository material, and a large number of references. Many unsolved computational and mathematical problems of substantial practical importance are pointed out.
This volume collects the edited and reviewed contribution presented in the 9th iTi Conference that took place virtually, covering fundamental and applied aspects in turbulence. In the spirit of the iTi conference, the volume is produced after the conference so that the authors had the opportunity to incorporate comments and discussions raised during the meeting. In the present book, the contributions have been structured according to the topics: I Experiments II Simulations and Modelling III Data Processing and Scaling IV Theory V Miscellaneous topics
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Pade approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the "actors." This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
In the part on Fourier analysis, we discuss pointwise convergence results, summability methods and, of course, convergence in the quadratic mean of Fourier series. More advanced topics include a first discussion of Hardy spaces. We also spend some time handling general orthogonal series expansions, in particular, related to orthogonal polynomials. Then we switch to the Fourier integral, i.e. the Fourier transform in Schwartz space, as well as in some Lebesgue spaces or of measures.Our treatment of ordinary differential equations starts with a discussion of some classical methods to obtain explicit integrals, followed by the existence theorems of Picard-Lindeloef and Peano which are proved by fixed point arguments. Linear systems are treated in great detail and we start a first discussion on boundary value problems. In particular, we look at Sturm-Liouville problems and orthogonal expansions. We also handle the hypergeometric differential equations (using complex methods) and their relations to special functions in mathematical physics. Some qualitative aspects are treated too, e.g. stability results (Ljapunov functions), phase diagrams, or flows.Our introduction to the calculus of variations includes a discussion of the Euler-Lagrange equations, the Legendre theory of necessary and sufficient conditions, and aspects of the Hamilton-Jacobi theory. Related first order partial differential equations are treated in more detail.The text serves as a companion to lecture courses, and it is also suitable for self-study. The text is complemented by ca. 260 problems with detailed solutions.
In the part on Fourier analysis, we discuss pointwise convergence results, summability methods and, of course, convergence in the quadratic mean of Fourier series. More advanced topics include a first discussion of Hardy spaces. We also spend some time handling general orthogonal series expansions, in particular, related to orthogonal polynomials. Then we switch to the Fourier integral, i.e. the Fourier transform in Schwartz space, as well as in some Lebesgue spaces or of measures.Our treatment of ordinary differential equations starts with a discussion of some classical methods to obtain explicit integrals, followed by the existence theorems of Picard-Lindeloef and Peano which are proved by fixed point arguments. Linear systems are treated in great detail and we start a first discussion on boundary value problems. In particular, we look at Sturm-Liouville problems and orthogonal expansions. We also handle the hypergeometric differential equations (using complex methods) and their relations to special functions in mathematical physics. Some qualitative aspects are treated too, e.g. stability results (Ljapunov functions), phase diagrams, or flows.Our introduction to the calculus of variations includes a discussion of the Euler-Lagrange equations, the Legendre theory of necessary and sufficient conditions, and aspects of the Hamilton-Jacobi theory. Related first order partial differential equations are treated in more detail.The text serves as a companion to lecture courses, and it is also suitable for self-study. The text is complemented by ca. 260 problems with detailed solutions.
The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.
Conventional methods of financial modeling are often overly exact, to the point that their purpose--to aid in financial decision making--is easily lost. Tarrazo's approach, the use of approximation, gives professionals in finance, economics, and portfolio management a sound and sophisticated way to improve their decision making, particularly in such tasks as economic prediction, financial planning, and portfolio management. Tarrazo reviews how to build models, especially those with simultaneous equation systems, then provides a simple way to use approximate equation systems to solve them. Down to earth, readable, and meticulously explained throughout, the book is not only an important tool in practical problem solving situations, but it also provides valuable methods and guidance for upper level students and their instructors. Among the book's important contributions is its chapter on portfolio optimization. Tarrazo helps clarify the theory and application of modern portfolio theory, especially in regard to its implementation with commonly available information management tools (such as EXCEL). He also provides innovative ways to optimize portfolios under realistic conditions and a method to obtain optimal weights in interval form that does not rely on probability; instead, it relies on the mathematical quality of the matrix in the optimization. Another chapter shows that approximate equations are a general-purpose optimization tool, one that subsumes all other known optimization tools such as classical and mathematical programming. Tarrazo closes with an unusually full bibliography, containing more than 200 references spanning several areas of analysis and various disciplines.
This book presents an extensive overview of logarithmic integral operators with kernels depending on one or several complex parameters. Solvability of corresponding boundary value problems and determination of characteristic numbers are analyzed by considering these operators as operator-value functions of appropriate complex (spectral) parameters. Therefore, the method serves as a useful addition to classical approaches. Special attention is given to the analysis of finite-meromorphic operator-valued functions, and explicit formulas for some inverse operators and characteristic numbers are developed, as well as the perturbation technique for the approximate solution of logarithmic integral equations. All essential properties of the generalized single- and double-layer potentials with logarithmic kernels and Green's potentials are considered. Fundamentals of the theory of infinite-matrix summation operators and operator-valued functions are presented, including applications to the solution of logarithmic integral equations. Many boundary value problems for the two-dimensional Helmholtz equation are discussed and explicit formulas for Green's function of canonical domains with separated logarithmic singularities are presented.
This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.
Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}'_{216}$. It provides another beautiful example on the fundamental unity of mathematics.
A collection of problems and solutions in real analysis based on
the major textbook, "Principles of Real Analysis" (also by
Aliprantis and Burkinshaw), "Problems in Real Analysis" is the
ideal companion for senior science and engineering undergraduates
and first-year graduate courses in real analysis. It is intended
for use as an independent source, and is an invaluable tool for
students who wish to develop a deep understanding and proficiency
in the use of integration methods.
This book provides a systematic account of several breakthroughs in the modern theory of zeta functions. It contains two different approaches to introduce and study genuine zeta functions for reductive groups (and their maximal parabolic subgroups) defined over number fields. Namely, the geometric one, built up from stability of principal lattices and an arithmetic cohomology theory, and the analytic one, from Langlands' theory of Eisenstein systems and some techniques used in trace formula, respectively. Apparently different, they are unified via a Lafforgue type relation between Arthur's analytic truncations and parabolic reductions of Harder-Narasimhan and Atiyah-Bott. Dominated by the stability condition and/or the Lie structures embedded in, these zeta functions have a standard form of the functional equation, admit much more refined symmetric structures, and most surprisingly, satisfy a weak Riemann hypothesis. In addition, two levels of the distributions for their zeros are exposed, i.e. a classical one giving the Dirac symbol, and a secondary one conjecturally related to GUE.This book is written not only for experts, but for graduate students as well. For example, it offers a summary of basic theories on Eisenstein series and stability of lattices and arithmetic principal torsors. The second part on rank two zeta functions can be used as an introduction course, containing a Siegel type treatment of cusps and fundamental domains, and an elementary approach to the trace formula involved. Being in the junctions of several branches and advanced topics of mathematics, these works are very complicated, the results are fundamental, and the theory exposes a fertile area for further research.
This text is an introduction to the use of vectors in a wide range of undergraduate disciplines. It is written specifically to match the level of experience and mathematical qualifications of students entering undergraduate and Higher National programmes and it assumes only a minimum of mathematical background on the part of the reader. Basic mathematics underlying the use of vectors is covered, and the text goes from fundamental concepts up to the level of first-year examination questions in engineering and physics. The material treated includes electromagnetic waves, alternating current, rotating fields, mechanisms, simple harmonic motion and vibrating systems. There are examples and exercises and the book contains many clear diagrams to complement the text. The provision of examples allows the student to become proficient in problem solving and the application of the material to a range of applications from science and engineering demonstrates the versatility of vector algebra as an analytical tool.
This book introduces the reader to important concepts in modern applied analysis, such as homogenization, gradient flows on metric spaces, geometric evolution, Gamma-convergence tools, applications of geometric measure theory, properties of interfacial energies, etc. This is done by tackling a prototypical problem of interfacial evolution in heterogeneous media, where these concepts are introduced and elaborated in a natural and constructive way. At the same time, the analysis introduces open issues of a general and fundamental nature, at the core of important applications. The focus on two-dimensional lattices as a prototype of heterogeneous media allows visual descriptions of concepts and methods through a large amount of illustrations.
With this fun romp through the world of equations we encounter in our everyday lives, you'll find yourself flipping through the stories of fifty-two formulas faster than a deck of cards. John M. Henshaw's intriguing true accounts, each inspired by a different mathematical equation, are both succinct and easy to read. His tales come from the spheres of sports, business, history, the arts, science, and technology. Anecdotes about famous equations, like E=mc 2, appear alongside tales of not-so-famous-but equally fascinating-equations, such as the one used to determine the SPF number for sunscreen. Drawn from the breadth of human endeavor, Henshaw's stories demonstrate the power and utility of math. He entertains us by exploring the ways that equations can be used to explain, among other things, Ponzi schemes, the placebo effect, "dog years," IQ, the wave mechanics of tsunamis, the troubled modern beekeeping industry, and the Challenger disaster. Smartly conceived and fast paced, his book offers something for anyone curious about math and its impacts. |
You may like...
Statistical Analysis of Networks
Konstantin Avrachenkov, Maximilien Dreveton
Hardcover
R3,164
Discovery Miles 31 640
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
|