![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
The problem of evaluating integrals is well known to every student who has had a year of calculus. It was an especially important subject in 19th century analysis and it has now been revived with the appearance of symbolic languages. In this book, the authors use the problem of exact evaluation of definite integrals as a starting point for exploring many areas of mathematics. The questions discussed in this book, first published in 2004, are as old as calculus itself. In presenting the combination of methods required for the evaluation of most integrals, the authors take the most interesting, rather than the shortest, path to the results. Along the way, they illuminate connections with many subjects, including analysis, number theory, algebra and combinatorics. This will be a guided tour of exciting discovery for undergraduates and their teachers in mathematics, computer science, physics, and engineering.
Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer's 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate students in mathematics, applied mathematics and engineering, in particular, engineers working in signal and image processing.
AN UPDATED GUIDE TO STATISTICAL MODELING TECHNIQUES USED IN THE SOCIAL AND NATURAL SCIENCES This revised and updated second edition of Applied Univariate, Bivariate, and Multivariate Statistics: Understanding Statistics for Social and Natural Scientists, with Applications in SPSS and R contains an accessible introduction to statistical modeling techniques commonly used in the social and natural sciences. The text offers a blend of statistical theory and methodology and reviews both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques using software packages such as R and SPSS(R). To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. The second edition has been designed to be more approachable by minimizing theoretical or technical jargon and maximizing conceptual understanding with easy-to-apply software examples. This important text: Offers demonstrations of statistical techniques using software packages such as R and SPSS(R) Contains examples of hypothetical and real data with statistical analyses Provides historical and philosophical insights into many of the techniques used in modern science Includes a companion website that features further instructional details, additional data sets, and solutions to selected exercises Written for students of social and applied sciences, Applied Univariate, Bivariate, and Multivariate Statistics, Second Edition offers a thorough introduction to the world of statistical modeling techniques in the sciences.
This book is a revised and updated version, including a substantial portion of new material, of J. D. Cole's text Perturbation Methods in Applied Mathe matics, Ginn-Blaisdell, 1968. We present the material at a level which assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate level course on the subject. The applied mathematician, attempting to understand or solve a physical problem, very often uses a perturbation procedure. In doing this, he usually draws on a backlog of experience gained from the solution of similar examples rather than on some general theory of perturbations. The aim of this book is to survey these perturbation methods, especially in connection with differ ential equations, in order to illustrate certain general features common to many examples. The basic ideas, however, are also applicable to integral equations, integrodifferential equations, and even to_difference equations. In essence, a perturbation procedure consists of constructing the solution for a problem involving a small parameter B, either in the differential equation or the boundary conditions or both, when the solution for the limiting case B = 0 is known. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of B."
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
The main subject of this introductory book is simple random walk on the integer lattice, with special attention to the two-dimensional case. This fascinating mathematical object is the point of departure for an intuitive and richly illustrated tour of related topics at the active edge of research. It starts with three different proofs of the recurrence of the two-dimensional walk, via direct combinatorial arguments, electrical networks, and Lyapunov functions. After reviewing some relevant potential-theoretic tools, the reader is guided toward the relatively new topic of random interlacements - which can be viewed as a 'canonical soup' of nearest-neighbour loops through infinity - again with emphasis on two dimensions. On the way, readers will visit conditioned simple random walks - which are the 'noodles' in the soup - and also discover how Poisson processes of infinite objects are constructed and review the recently introduced method of soft local times. Each chapter ends with many exercises, making it suitable for courses and independent study.
Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.
The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax-Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric-Magnetohydrodynamic Equations References
The theory of almost periodic functions was first developed by the Danish mathematician H. Bohr during 1925-1926. Then Bohr's work was substantially extended by S. Bochner, H. Weyl, A. Besicovitch, J. Favard, J. von Neumann, V. V. Stepanov, N. N. Bogolyubov, and oth ers. Generalization of the classical theory of almost periodic functions has been taken in several directions. One direction is the broader study of functions of almost periodic type. Related this is the study of ergodic ity. It shows that the ergodicity plays an important part in the theories of function spectrum, semigroup of bounded linear operators, and dynamical systems. The purpose of this book is to develop a theory of almost pe riodic type functions and ergodicity with applications-in particular, to our interest-in the theory of differential equations, functional differen tial equations and abstract evolution equations. The author selects these topics because there have been many (excellent) books on almost periodic functions and relatively, few books on almost periodic type and ergodicity. The author also wishes to reflect new results in the book during recent years. The book consists of four chapters. In the first chapter, we present a basic theory of four almost periodic type functions. Section 1. 1 is about almost periodic functions. To make the reader easily learn the almost periodicity, we first discuss it in scalar case. After studying a classical theory for this case, we generalize it to finite dimensional vector-valued case, and finally, to Banach-valued (including Hilbert-valued) situation."
The Assouad dimension is a notion of dimension in fractal geometry that has been the subject of much interest in recent years. This book, written by a world expert on the topic, is the first thorough account of the Assouad dimension and its many variants and applications in fractal geometry and beyond. It places the theory of the Assouad dimension in context among up-to-date treatments of many key advances in fractal geometry, while also emphasising its diverse connections with areas of mathematics including number theory, dynamical systems, harmonic analysis, and probability theory. A final chapter detailing open problems and future directions for research brings readers to the cutting edge of this exciting field. This book will be an indispensable part of the modern fractal geometer's library and a valuable resource for pure mathematicians interested in the beauty and many applications of the Assouad dimension.
Matrix positivity is a central topic in matrix theory: properties that generalize the notion of positivity to matrices arose from a large variety of applications, and many have also taken on notable theoretical significance, either because they are natural or unifying. This is the first book to provide a comprehensive and up-to-date reference of important material on matrix positivity classes, their properties, and their relations. The matrix classes emphasized in this book include the classes of semipositive matrices, P-matrices, inverse M-matrices, and copositive matrices. This self-contained reference will be useful to a large variety of mathematicians, engineers, and social scientists, as well as graduate students. The generalizations of positivity and the connections observed provide a unique perspective, along with theoretical insight into applications and future challenges. Direct applications can be found in data analysis, differential equations, mathematical programming, computational complexity, models of the economy, population biology, dynamical systems and control theory.
This book is devoted to classical and modern achievements in complex analysis. In order to benefit most from it, a first-year university background is sufficient; all other statements and proofs are provided. We begin with a brief but fairly complete course on the theory of holomorphic, meromorphic, and harmonic functions. We then present a uniformization theory, and discuss a representation of the moduli space of Riemann surfaces of a fixed topological type as a factor space of a contracted space by a discrete group. Next, we consider compact Riemann surfaces and prove the classical theorems of Riemann-Roch, Abel, Weierstrass, etc. We also construct theta functions that are very important for a range of applications. After that, we turn to modern applications of this theory. First, we build the (important for mathematics and mathematical physics) Kadomtsev-Petviashvili hierarchy and use validated results to arrive at important solutions to these differential equations. We subsequently use the theory of harmonic functions and the theory of differential hierarchies to explicitly construct a conformal mapping that translates an arbitrary contractible domain into a standard disk - a classical problem that has important applications in hydrodynamics, gas dynamics, etc. The book is based on numerous lecture courses given by the author at the Independent University of Moscow and at the Mathematics Department of the Higher School of Economics.
This book discusses the theory of third-order differential equations. Most of the results are derived from the results obtained for third-order linear homogeneous differential equations with constant coefficients. M. Gregus, in his book written in 1987, only deals with third-order linear differential equations. These findings are old, and new techniques have since been developed and new results obtained. Chapter 1 introduces the results for oscillation and non-oscillation of solutions of third-order linear differential equations with constant coefficients, and a brief introduction to delay differential equations is given. The oscillation and asymptotic behavior of non-oscillatory solutions of homogeneous third-order linear differential equations with variable coefficients are discussed in Ch. 2. The results are extended to third-order linear non-homogeneous equations in Ch. 3, while Ch. 4 explains the oscillation and non-oscillation results for homogeneous third-order nonlinear differential equations. Chapter 5 deals with the "z"-type oscillation and non-oscillation of third-order nonlinear and non-homogeneous differential equations. Chapter 6 is devoted to the study of third-order delay differential equations. Chapter 7 explains the stability of solutions of third-order equations. Some knowledge of differential equations, analysis and algebra is desirable, but not essential, in order to study the topic.
Basic Analysis V: Functional Analysis and Topology introduces graduate students in science to concepts from topology and functional analysis, both linear and nonlinear. It is the fifth book in a series designed to train interested readers how to think properly using mathematical abstractions, and how to use the tools of mathematical analysis in applications. It is important to realize that the most difficult part of applying mathematical reasoning to a new problem domain is choosing the underlying mathematical framework to use on the problem. Once that choice is made, we have many tools we can use to solve the problem. However, a different choice would open up avenues of analysis from a different, perhaps more productive, perspective. In this volume, the nature of these critical choices is discussed using applications involving the immune system and cognition. Features Develops a proof of the Jordan Canonical form to show some basic ideas in algebraic topology Provides a thorough treatment of topological spaces, finishing with the Krein-Milman theorem Discusses topological degree theory (Brouwer, Leray-Schauder, and Coincidence) Carefully develops manifolds and functions on manifolds ending with Riemannian metrics Suitable for advanced students in mathematics and associated disciplines Can be used as a traditional textbook as well as for self-study Author James K. Peterson is an Emeritus Professor at the School of Mathematical and Statistical Sciences, Clemson University. He tries hard to build interesting models of complex phenomena using a blend of mathematics, computation, and science. To this end, he has written four books on how to teach such things to biologists and cognitive scientists. These books grew out of his Calculus for Biologists courses offered to the biology majors from 2007 to 2015. He has taught the analysis courses since he started teaching both at Clemson and at his previous post at Michigan Technological University. In between, he spent time as a senior engineer in various aerospace firms and even did a short stint in a software development company. The problems he was exposed to were very hard, and not amenable to solution using just one approach. Using tools from many branches of mathematics, from many types of computational languages, and from first-principles analysis of natural phenomena was absolutely essential to make progress. In both mathematical and applied areas, students often need to use advanced mathematics tools they have not learned properly. So, he has recently written a series of five books on mathematical analysis to help researchers with the problem of learning new things after they have earned their degrees and are practicing scientists. Along the way, he has also written papers in immunology, cognitive science, and neural network technology, in addition to having grants from the NSF, NASA, and the US Army. He also likes to paint, build furniture, and write stories.
The third edition of this widely popular textbook is authored by a master teacher. This book provides a mathematically rigorous introduction to analysis of real valued functions of one variable. This intuitive, student-friendly text is written in a manner that will help to ease the transition from primarily computational to primarily theoretical mathematics. The material is presented clearly and as intuitive as possible while maintaining mathematical integrity. The author supplies the ideas of the proof and leaves the write-up as an exercise. The text also states why a step in a proof is the reasonable thing to do and which techniques are recurrent. Examples, while no substitute for a proof, are a valuable tool in helping to develop intuition and are an important feature of this text. Examples can also provide a vivid reminder that what one hopes might be true is not always true. Features of the Third Edition: Begins with a discussion of the axioms of the real number system. The limit is introduced via sequences. Examples motivate what is to come, highlight the need for hypothesis in a theorem, and make abstract ideas more concrete. A new section on the Cantor set and the Cantor function. Additional material on connectedness. Exercises range in difficulty from the routine "getting your feet wet" types of problems to the moderately challenging problems. Topology of the real number system is developed to obtain the familiar properties of continuous functions. Some exercises are devoted to the construction of counterexamples. The author presents the material to make the subject understandable and perhaps exciting to those who are beginning their study of abstract mathematics. Table of Contents Preface Introduction The Real Number System Sequences of Real Numbers Topology of the Real Numbers Continuous Functions Differentiation Integration Series of Real Numbers Sequences and Series of Functions Fourier Series Bibliography Hints and Answers to Selected Exercises Index Biography James R. Kirkwood holds a Ph.D. from University of Virginia. He has authored fifteen, published mathematics textbooks on various topics including calculus, real analysis, mathematical biology and mathematical physics. His original research was in mathematical physics, and he co-authored the seminal paper in a topic now called Kirkwood-Thomas Theory in mathematical physics. During the summer, he teaches real analysis to entering graduate students at the University of Virginia. He has been awarded several National Science Foundation grants. His texts, Elementary Linear Algebra, Linear Algebra, and Markov Processes, are also published by CRC Press.
In 1963 Walter Feit and John G. Thompson published a proof of a 1911 conjecture by Burnside that every finite group of odd order is solvable. This proof, which ran for 255 pages, was a tour-de-force of mathematics and inspired intense effort to classify finite simple groups. This book presents a revision and expansion of the first half of the proof of the Feit-Thompson theorem. Simpler, more detailed proofs are provided for some intermediate theorems. Recent results are used to shorten other proofs. The book will make the first half of this remarkable proof accessible to readers familiar with just the rudiments of group theory.
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.
This book presents functional analysis over arbitrary valued fields and investigates normed spaces and algebras over fields with valuation, with attention given to the case when the norm and the valuation are nonarchimedean. It considers vector spaces over fields with nonarchimedean valuation.
The Banach-Tarski Paradox is a most striking mathematical construction: it asserts that a solid ball can be taken apart into finitely many pieces that can be rearranged using rigid motions to form a ball twice as large. This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, set theory, and logic. This new edition of a classic book unifies contemporary research on the paradox. It has been updated with many new proofs and results, and discussions of the many problems that remain unsolved. Among the new results presented are several unusual paradoxes in the hyperbolic plane, one of which involves the shapes of Escher's famous 'Angel and Devils' woodcut. A new chapter is devoted to a complete proof of the remarkable result that the circle can be squared using set theory, a problem that had been open for over sixty years.
Bessel functions have the peculiarity of being functions of two independent variables: argument and order. They have been studied extensively because of their countless applications, but the vast majority of available literature is devoted to the case of fixed order, variable argument. This two-volume work explores the opposite case. This volume collects tabulations of the first, second, and third derivatives with respect to the order.
These Proceedings offer a selection of peer-reviewed research and survey papers by some of the foremost international researchers in the fields of finance, energy, stochastics and risk, who present their latest findings on topical problems. The papers cover the areas of stochastic modeling in energy and financial markets; risk management with environmental factors from a stochastic control perspective; and valuation and hedging of derivatives in markets dominated by renewables, all of which further develop the theory of stochastic analysis and mathematical finance. The papers were presented at the first conference on "Stochastics of Environmental and Financial Economics (SEFE)", being part of the activity in the SEFE research group of the Centre of Advanced Study (CAS) at the Academy of Sciences in Oslo, Norway during the 2014/2015 academic year.
Iterative Methods for Fixed Points of Nonlinear Operators offers an introduction into iterative methods of fixed points for nonexpansive mappings, pseudo-contrations in Hilbert Spaces and in Banach Spaces. Iterative methods of zeros for accretive mappings in Banach Spaces and monotone mappings in Hilbert Spaces are also discussed. It is an essential work for mathematicians and graduate students in nonlinear analysis.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Bessel functions have the peculiarity of being functions of two independent variables: argument and order. They have been studied extensively because of their countless applications, but the vast majority of available literature is devoted to the case of fixed order, variable argument. This two-volume work explores the opposite case. This volume focuses on properties of the functions and mathematical operations with respect to the order. |
You may like...
Fault-Tolerant Parallel and Distributed…
Dimiter R. Avresky, David R. Kaeli
Hardcover
R4,233
Discovery Miles 42 330
An Introduction to Parallel and Vector…
Ronald W. Shonkwiler, Lew Lefton
Hardcover
|