![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Despite the fact that Maple is one of the most popular computer algebra systems on the market, surprisingly few users realise its potential for scientific visualisation. This book equips readers with the graphics tools needed on the voyage into the complex and beautiful world of curves and surfaces. A comprehensive treatment of Maples graphics commands and structures is combined with an introduction to the main aspects of visual perception, with priority given to the use of light, colour, perspective, and geometric transformations. Numerous examples cover all aspects of Maple graphics, and these may be easily tailored to the individual needs of the reader. The approach is context-independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book will serve as a comprehensive reference manual. For the beginner, it offers a user-friendly introduction to the subject, with mathematical requirements kept to a minimum, while, for those interested in advanced mathematical visualisation, it explains how to maximise Maples graphical capabilities.
A development of some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader, and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. This third edition contains new material on maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter commenting on history and recent developments, as well as an updated and expanded reading list.
Convexity is important in theoretical aspects of mathematics and also for economists and physicists. In this monograph the author provides a comprehensive insight into convex sets and functions including the infinite-dimensional case and emphasizing the analytic point of view. Chapter one introduces the reader to the basic definitions and ideas that play central roles throughout the book. The rest of the book is divided into four parts: convexity and topology on infinite-dimensional spaces; Loewner's theorem; extreme points of convex sets and related issues, including the Krein-Milman theorem and Choquet theory; and a discussion of convexity and inequalities. The connections between disparate topics are clearly explained, giving the reader a thorough understanding of how convexity is useful as an analytic tool. A final chapter overviews the subject's history and explores further some of the themes mentioned earlier. This is an excellent resource for anyone interested in this central topic.
Dirac's formalism of quantum mechanics was always praised for its elegance. This book introduces the student to its mathematical foundations and demonstrates its ease of applicability to problems in quantum physics. The book starts by describing in detail the concept of Gel'fand triplets and how one can make use of them to make the Dirac heuristic approach rigorous. The results are then deepened by giving the analytic tools, such as the Hardy class function and Hilbert and Mellin transforms, needed in applications to physical problems. Next, the RHS model for decaying states based on the concept of Gamow vectors is presented. Applications are given to physical theories of such phenomena as decaying states and resonances.
The shared purpose in this collection of papers is to apply the theory of self-adjoint extensions of symmetry operators in various areas of physics. This allows the construction of exactly solvable models in quantum mechanics, quantum field theory, high energy physics, solid-state physics, microelectronics and other fields. The 20 papers selected for these proceedings give an overview of this field of research unparallelled in the published literature; in particular the views of the leading schools are clearly presented. The book will be an important source for researchers and graduate students in mathematical physics for many years to come. In these proceedings, researchers and graduate students in mathematical physics will find ways to construct exactly solvable models in quantum mechanics, quantum field theory, high energy physics, solid-state physics, microelectronics and other fields.
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support.
Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable models for further mathematical analysis or computer simulations. For the most part, derivations are based on perturbation methods, and the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro-differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added.
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the College de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.
Originally published in 1987, this book is devoted to the approximation of real functions by real rational functions. These are, in many ways, a more convenient tool than polynomials, and interest in them was growing, especially since D. Newman's work in the mid-sixties. The authors aim at presenting the basic achievements of the subject and, for completeness, also discuss some topics from complex rational approximation. Certain classical and modern results from linear approximation theory and spline approximation are also included for comparative purposes. This book will be of value to anyone with an interest in approximation theory and numerical analysis.
This volume contains five review articles, two in the Algebra part and three in the Geometry part, surveying the fields of cate gories and class field theory, in the Algebra part, and of Finsler spaces, structures on differentiable manifolds, and packing, cover ing, etc., in the Geometry part. The literature covered is primar Hy that published in 1964-1967. Contents ALGEBRA CATEGORIES ............... . 3 M. S. Tsalenko and E. G. Shul'geifer 1. Introduction........... 3 2. Foundations of the Theory of Categories . . . . . 4 3. Fundamentals of the Theory of Categories . . . . . 6 4. Embeddings of Categories ... . . . . . . . . . . . . 14 5. Representations of Categories . . . . . . . . . . . . . 16 6. Axiomatic Characteristics of Algebraic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7. Reflective Subcategories; Varieties. . . 20 8. Radicals in Categories . . . . . . . 24 9. Categories with Involution. . . . . . 29 10. Universal Algebras in Categories . 30 11. Categories with Multiplication . . . 34 12. Duality of Functors. .. ....... 37 13. Homotopy Theory . . . . .. ........... 39 14. Homological Algebra in Categories. . . . . . 41 15. Concrete Categories . . . . .. ......... 44 16. Generalizations.. . . . . . . 45 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CLASS FIELD THEORY. FIELD EXTENSIONS. . . . . . . . 59 S. P. Demushkin 66 Literature Cited vii CONTENTS viii GEOMETRY 75 FINSLER SPACES AND THEIR GENERALIZATIONS .."
This 2002 monograph offers a broad investigative tool in ergodic theory and measurable dynamics. The motivation for this work is that one may measure how similar two dynamical systems are by asking how much the time structure of orbits of one system must be distorted for it to become the other. Different restrictions on the allowed distortion will lead to different restricted orbit equivalence theories. These include Ornstein's Isomorphism theory, Kakutani Equivalence theory and a list of others. By putting such restrictions in an axiomatic framework, a general approach is developed that encompasses all these examples simultaneously and gives insight into how to seek further applications. The work is placed in the context of discrete amenable group actions where time is not required to be one-dimensional, making the results applicable to a much wider range of problems and examples.
aiStructure of Solutions of Variational Problems is devoted to recent progress made in the studies of the structure of approximate solutions of variational problems considered on subintervals of a real line. Results on properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals are presented in a clear manner. Solutions, new approaches, techniques and methods to a number of difficult problems in the calculus of variations are illustrated throughout this book. This book also contains significant results and information about the turnpike property of the variational problems. This well-known property is a general phenomenon which holds for large classes of variational problems. The author examines the following in relation to the turnpike property in individual (non-generic) turnpike results, sufficient and necessary conditions for the turnpike phenomenon as well as in the non-intersection property for extremals of variational problems. This book appeals to mathematicians working in optimal control and the calculus as well as with graduate students.aiaiai
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
This volume and its companion present a selection of the mathematical writings of P. R. Halmos. The present volume consists of research publications plus two papers which, although of a more expository nature, were deemed primarily of interest to the specialist ("Ten Problems in Hilbert Space" (1970d), and" Ten Years in Hilbert Space" (1979b)). The remaining expository and all the popular writings are in the second volume. The papers in the present volume are arranged chronologically. As it happens, that arrangement also groups the papers according to subject matter: those published before 1950 deal with probability and measure theory, those after 1950 with operator theory. A series of papers from the mid 1950's on algebraic logic is excluded; the papers were republished by Chelsea (New York) in 1962 under the title" Algebraic Logic." This volume contains two introductory essays, one by Nathaniel Friedman on Halmos's work in ergodic theory, one by Donald Sarason on Halmos's work in operator theory. There is an essay by Leonard Gillman on Halmos's expository and popular writings in the second volume. The editors wish to express their thanks to the staff of Springer-Verlag. They are grateful also for the help of the following people: C. Apostol, W. B. Arveson, R. G. Douglas, C. Pearcy, S. Popa, P. Rosenthal, A. L. Shields, D. Voiculescu, S. Walsh. Berkeley, CA Donald E. Sarason vii WORK IN OPERATOR THEORY P. R. Halmos's first papers on Hilbert space operators appeared in 1950.
An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Christian Heinemann explores a unifying model which couples phase separation and damage processes in a system of partial differential equations. The model has technological applications to solder materials where interactions of both phenomena have been observed and cannot be neglected for a realistic description. The author derives the equations in a thermodynamically consistent framework and presents suitable weak formulations for various types of this coupled system. In the main part, he proves the existence of weak solutions and investigates degenerate limits.
The main concern in all scientific work must be the human being himsel[ This, one should never forget among all those diagrams and equations. Albert Einstein This volume is part of a comprehensive presentation of nonlinear functional analysis, the basic content of which has been outlined in the Preface of Part I. A Table of Contents for all five volumes may also be found in Part I. The Part IV and the following Part V contain applications to mathematical present physics. Our goals are the following: (i) A detailed motivation of the basic equations in important disciplines of theoretical physics. (ii) A discussion of particular problems which have played a significant role in the development of physics, and through which important mathe matical and physical insight may be gained. (iii) A combination of classical and modern ideas. (iv) An attempt to build a bridge between the language and thoughts of physicists and mathematicians. Weshall always try to advance as soon as possible to the heart ofthe problern under consideration and to concentrate on the basic ideas.
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
A glorious period of Hungarian mathematics started in 1900 when Lipot Fejer discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume. "
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka. |
You may like...
Cambridge Lower Secondary Computing 8…
Tristan Kirkpatrick, Pam Jones, …
Paperback
R946
Discovery Miles 9 460
Digital Production, Design and…
Sonia Stuart, Maureen Everett
Paperback
R1,269
Discovery Miles 12 690
AQA GCSE Computer Science, Second…
George Rouse, Lorne Pearcey, …
Paperback
R1,055
Discovery Miles 10 550
|