![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Simple Ordinary Differential Equations may have solutions in terms of power series whose coefficients grow at such a rate that the series has a radius of convergence equal to zero. In fact, every linear meromorphic system has a formal solution of a certain form, which can be relatively easily computed, but which generally involves such power series diverging everywhere. In this book the author presents the classical theory of meromorphic systems of ODE in the new light shed upon it by the recent achievements in the theory of summability of formal power series.
Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable models for further mathematical analysis or computer simulations. For the most part, derivations are based on perturbation methods, and the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro-differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added.
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the College de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.
This volume contains five review articles, two in the Algebra part and three in the Geometry part, surveying the fields of cate gories and class field theory, in the Algebra part, and of Finsler spaces, structures on differentiable manifolds, and packing, cover ing, etc., in the Geometry part. The literature covered is primar Hy that published in 1964-1967. Contents ALGEBRA CATEGORIES ............... . 3 M. S. Tsalenko and E. G. Shul'geifer 1. Introduction........... 3 2. Foundations of the Theory of Categories . . . . . 4 3. Fundamentals of the Theory of Categories . . . . . 6 4. Embeddings of Categories ... . . . . . . . . . . . . 14 5. Representations of Categories . . . . . . . . . . . . . 16 6. Axiomatic Characteristics of Algebraic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7. Reflective Subcategories; Varieties. . . 20 8. Radicals in Categories . . . . . . . 24 9. Categories with Involution. . . . . . 29 10. Universal Algebras in Categories . 30 11. Categories with Multiplication . . . 34 12. Duality of Functors. .. ....... 37 13. Homotopy Theory . . . . .. ........... 39 14. Homological Algebra in Categories. . . . . . 41 15. Concrete Categories . . . . .. ......... 44 16. Generalizations.. . . . . . . 45 Literature Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CLASS FIELD THEORY. FIELD EXTENSIONS. . . . . . . . 59 S. P. Demushkin 66 Literature Cited vii CONTENTS viii GEOMETRY 75 FINSLER SPACES AND THEIR GENERALIZATIONS .."
aiStructure of Solutions of Variational Problems is devoted to recent progress made in the studies of the structure of approximate solutions of variational problems considered on subintervals of a real line. Results on properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals are presented in a clear manner. Solutions, new approaches, techniques and methods to a number of difficult problems in the calculus of variations are illustrated throughout this book. This book also contains significant results and information about the turnpike property of the variational problems. This well-known property is a general phenomenon which holds for large classes of variational problems. The author examines the following in relation to the turnpike property in individual (non-generic) turnpike results, sufficient and necessary conditions for the turnpike phenomenon as well as in the non-intersection property for extremals of variational problems. This book appeals to mathematicians working in optimal control and the calculus as well as with graduate students.aiaiai
This new edition provides an updated approach for students, engineers, and researchers to apply numerical methods for solving problems using MATLAB(R) This accessible book makes use of MATLAB(R) software to teach the fundamental concepts for applying numerical methods to solve practical engineering and/or science problems. It presents programs in a complete form so that readers can run them instantly with no programming skill, allowing them to focus on understanding the mathematical manipulation process and making interpretations of the results. Applied Numerical Methods Using MATLAB(R), Second Edition begins with an introduction to MATLAB usage and computational errors, covering everything from input/output of data, to various kinds of computing errors, and on to parameter sharing and passing, and more. The system of linear equations is covered next, followed by a chapter on the interpolation by Lagrange polynomial. The next sections look at interpolation and curve fitting, nonlinear equations, numerical differentiation/integration, ordinary differential equations, and optimization. Numerous methods such as the Simpson, Euler, Heun, Runge-kutta, Golden Search, Nelder-Mead, and more are all covered in those chapters. The eighth chapter provides readers with matrices and Eigenvalues and Eigenvectors. The book finishes with a complete overview of differential equations. Provides examples and problems of solving electronic circuits and neural networks Includes new sections on adaptive filters, recursive least-squares estimation, Bairstow's method for a polynomial equation, and more Explains Mixed Integer Linear Programing (MILP) and DOA (Direction of Arrival) estimation with eigenvectors Aimed at students who do not like and/or do not have time to derive and prove mathematical results Applied Numerical Methods Using MATLAB(R), Second Edition is an excellent text for students who wish to develop their problem-solving capability without being involved in details about the MATLAB codes. It will also be useful to those who want to delve deeper into understanding underlying algorithms and equations.
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
This volume and its companion present a selection of the mathematical writings of P. R. Halmos. The present volume consists of research publications plus two papers which, although of a more expository nature, were deemed primarily of interest to the specialist ("Ten Problems in Hilbert Space" (1970d), and" Ten Years in Hilbert Space" (1979b)). The remaining expository and all the popular writings are in the second volume. The papers in the present volume are arranged chronologically. As it happens, that arrangement also groups the papers according to subject matter: those published before 1950 deal with probability and measure theory, those after 1950 with operator theory. A series of papers from the mid 1950's on algebraic logic is excluded; the papers were republished by Chelsea (New York) in 1962 under the title" Algebraic Logic." This volume contains two introductory essays, one by Nathaniel Friedman on Halmos's work in ergodic theory, one by Donald Sarason on Halmos's work in operator theory. There is an essay by Leonard Gillman on Halmos's expository and popular writings in the second volume. The editors wish to express their thanks to the staff of Springer-Verlag. They are grateful also for the help of the following people: C. Apostol, W. B. Arveson, R. G. Douglas, C. Pearcy, S. Popa, P. Rosenthal, A. L. Shields, D. Voiculescu, S. Walsh. Berkeley, CA Donald E. Sarason vii WORK IN OPERATOR THEORY P. R. Halmos's first papers on Hilbert space operators appeared in 1950.
An up-to-date and unified treatment of bifurcation theory for variational inequalities in reflexive spaces and the use of the theory in a variety of applications, such as: obstacle problems from elasticity theory, unilateral problems; torsion problems; equations from fluid mechanics and quasilinear elliptic partial differential equations. The tools employed are those of modern nonlinear analysis. Accessible to graduate students and researchers who work in nonlinear analysis, nonlinear partial differential equations, and additional research disciplines that use nonlinear mathematics.
Christian Heinemann explores a unifying model which couples phase separation and damage processes in a system of partial differential equations. The model has technological applications to solder materials where interactions of both phenomena have been observed and cannot be neglected for a realistic description. The author derives the equations in a thermodynamically consistent framework and presents suitable weak formulations for various types of this coupled system. In the main part, he proves the existence of weak solutions and investigates degenerate limits.
The main concern in all scientific work must be the human being himsel[ This, one should never forget among all those diagrams and equations. Albert Einstein This volume is part of a comprehensive presentation of nonlinear functional analysis, the basic content of which has been outlined in the Preface of Part I. A Table of Contents for all five volumes may also be found in Part I. The Part IV and the following Part V contain applications to mathematical present physics. Our goals are the following: (i) A detailed motivation of the basic equations in important disciplines of theoretical physics. (ii) A discussion of particular problems which have played a significant role in the development of physics, and through which important mathe matical and physical insight may be gained. (iii) A combination of classical and modern ideas. (iv) An attempt to build a bridge between the language and thoughts of physicists and mathematicians. Weshall always try to advance as soon as possible to the heart ofthe problern under consideration and to concentrate on the basic ideas.
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
A glorious period of Hungarian mathematics started in 1900 when Lipot Fejer discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume. "
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585-1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations.
This book is based on a one year course of lectures on structural sta bility of differential equations which the author has given for the past several years at the Department of Mathematics and Mechanics at the University of Leningrad. The theory of structural stability has been developed intensively over the last 25 years. This theory is now a vast domain of mathematics, having close relations to the classical qualitative theory of differential equations, to differential topology, and to the analysis on manifolds. Evidently it is impossible to present a complete and detailed account of all fundamental results of the theory during a one year course. So the purpose of the course of lectures (and also the purpose of this book) was more modest. The author was going to give an introduction to the language of the theory of structural stability, to formulate its principal results, and to introduce the students (and also the readers of the book) to some of the main methods of this theory. One can select two principal aspects of modern theory of structural stability (of course there are some conventions attached to this state ment). The first one, let us call it the "geometric" aspect, deals mainly with the description of the picture of trajectories of a system; and the second, let us say the "analytic" one, has in its centre the method for solving functional equations to find invariant manifolds, conjugating homeomorphisms, and so forth."
A unique series of fascinating research papers on subjects related to the work of Niels Henrik Abel, written by some of the foremost specialists in their fields. Some of the authors have been specifically invited to present papers, discussing the influence of Abel in a mathematical-historical context. Others have submitted papers presented at the Abel Bicentennial Conference, Oslo June 3-8, 2002. The idea behind the book has been to produce a text covering a substantial part of the legacy of Abel, as perceived at the beginning of the 21st century.
In preparing the second edition, I have taken advantage of the opportunity to correct errors as well as revise the presentation in many places. New material has been included, in addition, reflecting relevant recent work. The help of many colleagues (and especially Professor J. Stoer) in ferreting out errors is gratefully acknowledged. I also owe special thanks to Professor v. Sazonov for many discussions on the white noise theory in Chapter 6. February, 1981 A. V. BALAKRISHNAN v Preface to the First Edition The title "Applied Functional Analysis" is intended to be short for "Functional analysis in a Hilbert space and certain of its applications," the applications being drawn mostly from areas variously referred to as system optimization or control systems or systems analysis. One of the signs of the times is a discernible tilt toward application in mathematics and conversely a greater level of mathematical sophistication in the application areas such as economics or system science, both spurred undoubtedly by the heightening pace of digital computer usage. This book is an entry into this twilight zone. The aspects of functional analysis treated here are rapidly becoming essential in the training at the advance graduate level of system scientists and/or mathematical economists. There are of course now available many excellent treatises on functional analysis.
This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn Banach principle, the latter appearing in ten different but equivalent formula tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces."
This book serves as an elementary, self contained introduction into some important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The presentation is made using the classical method of continuation of local solutions with the help of a priori estimates obtained for small data.
Stochastic differential equations whose solutions are diffusion (or other random) processes have been the subject of lively mathematical research since the pioneering work of Gihman, Ito and others in the early fifties. As it gradually became clear that a great number of real phenomena in control theory, physics, biology, economics and other areas could be modelled by differential equations with stochastic perturbation terms, this research became somewhat feverish, with the results that a) the number of theroretical papers alone now numbers several hundred and b) workers interested in the field (especially from an applied viewpoint) have had no opportunity to consult a systematic account. This monograph, written by two of the world's authorities on prob ability theory and stochastic processes, fills this hiatus by offering the first extensive account of the calculus of random differential equations de fined in terms of the Wiener process. In addition to systematically ab stracting most of the salient results obtained thus far in the theory, it includes much new material on asymptotic and stability properties along with a potentially important generalization to equations defined with the aid of the so-called random Poisson measure whose solutions possess jump discontinuities. Although this monograph treats one of the most modern branches of applied mathematics, it can be read with profit by anyone with a knowledge of elementary differential equations armed with a solid course in stochastic processes from the measure-theoretic point of view." |
You may like...
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,319
Discovery Miles 43 190
Distributed Multimedia Information…
Jamie Callan, Fabio Crestani, …
Paperback
R1,440
Discovery Miles 14 400
Cellular Actuators - Modularity and…
Jun Ueda, Joshua A. Schultz, …
Paperback
Limits of Stability and Stabilization of…
Jing Zhu, Tian Qi, …
Hardcover
R2,681
Discovery Miles 26 810
|