![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Bessel functions have the peculiarity of being functions of two independent variables: argument and order. They have been studied extensively because of their countless applications, but the vast majority of available literature is devoted to the case of fixed order, variable argument. This two-volume work explores the opposite case. This volume focuses on properties of the functions and mathematical operations with respect to the order.
Basic Analysis IV: Measure Theory and Integration introduces students to concepts from measure theory and continues their training in the abstract way of looking at the world. This is a most important skill to have when your life's work will involve quantitative modeling to gain insight into the real world. This text generalizes the notion of integration to a very abstract setting in a variety of ways. We generalize the notion of the length of an interval to the measure of a set and learn how to construct the usual ideas from integration using measures. We discuss carefully the many notions of convergence that measure theory provides. Features * Can be used as a traditional textbook as well as for self-study * Suitable for advanced students in mathematics and associated disciplines * Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations.Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.
You and your trusty TI-84+ can ace math, together Graphing calculators are an essential tool in many high school and college math courses. TI-84 Plus CE Graphing Calculator For Dummies teaches you how to use these handy little machines with confidence, for basic math and far, far beyond. Packed with insider tips, common mistakes to avoid, and updates on the newest products available, this is the must-have reference to get the most out of your graphing calculator. You'll learn how to navigate the home screen, menus, and mode settings. And we'll teach you how to use your calculator to, uh, do math--starting with basic arithmetic functions and stepping up through matrices, complex numbers, and beyond. You can even learn about probability and how to conduct statistical data analysis with your TI-84+. Get graphing! Grasp the basics of using your TI-84+ graphing calculator Learn how to use shortcut menus to enter fractions, matrices and logarithms (with a change of base!) Figure out how to make charts, scatter plots, and more Get started programming in Python on the new TI-84 Plus CE Python Edition If you have the older TI-84+, look for tips that point out keystroke and functionality differences This edition of TI-84 Plus CE Graphing Calculator For Dummies lets you do everything there is to do with the very latest TI-84+ models. Whatever kind of math you're doing, you'll get some quality screen time in, thanks to Dummies.
Basic Analysis II: A Modern Calculus in Many Variables focuses on differentiation in Rn and important concepts about mappings from Rn to Rm, such as the inverse and implicit function theorem and change of variable formulae for multidimensional integration. These topics converge nicely with many other important applied and theoretical areas which are no longer covered in mathematical science curricula. Although it follows on from the preceding volume, this is a self-contained book, accessible to undergraduates with a minimal grounding in analysis. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
Basic Analysis III: Mappings on Infinite Dimensional Spaces is intended as a first course in abstract linear analysis. This textbook cover metric spaces, normed linear spaces and inner product spaces, along with many other deeper abstract ideas such a completeness, operators and dual spaces. These topics act as an important tool in the development of a mathematically trained scientist. Feature: Can be used as a traditional textbook as well as for self-study Suitable for undergraduates in mathematics and associated disciplines Emphasizes learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
In today's industrial and complex world, the progress of change is incredible. The amount of information which needs to be analyzed is very large and time has become more and more limited. Industries and firms of all sizes desire to increase productivity and sustainability to keep their competitive edge in the marketplace. One of the best tools for achieving this is the application of Quality Engineering Techniques (QET). This book will introduce the integrated model and the numerical applications for implementing it.
This book is a concise yet complete calculus textbook covering all essential topics in multi-variable calculus, including geometry in three-dimensional space, partial derivatives, maximum/minimum, multiple integrals and vector calculus as well as a chapter for ODE. All the chapters are constructed in a logical way to outline the essence of each topic and to address potential difficulties arising from learning.
In the last ten to fifteen years there have been many important developments in the theory of integrable equations. This period is marked in particular by the strong impact of soliton theory in many diverse areas of mathematics and physics; for example, algebraic geometry (the solution of the Schottky problem), group theory (the discovery of quantum groups), topology (the connection of Jones polynomials with integrable models), and quantum gravity (the connection of the KdV with matrix models). This is the first book to present a comprehensive overview of these developments. Numbered among the authors are many of the most prominent researchers in the field.
Basic Analysis I: Functions of a Real Variable is designed for students who have completed the usual calculus and ordinary differential equation sequence and a basic course in linear algebra. This is a critical course in the use of abstraction, but is just first volume in a sequence of courses which prepare students to become practicing scientists. This book is written with the aim of balancing the theory and abstraction with clear explanations and arguments, so that students who are from a variety of different areas can follow this text and use it profitably for self-study. It can also be used as a supplementary text for anyone whose work requires that they begin to assimilate more abstract mathematical concepts as part of their professional growth. Features Can be used as a traditional textbook as well as for self-study Suitable for undergraduate mathematics students, or for those in other disciplines requiring a solid grounding in abstraction Emphasises learning how to understand the consequences of assumptions using a variety of tools to provide the proofs of propositions
The book is written mainly to advanced graduate and post-graduate students following courses in Perturbation Theory and Celestial Mechanics. It is also intended to serve as a guide in research work and is written in a very explicit way: all perturbation theories are given with details allowing its immediate application to real problems. In addition, they are followed by examples showing all steps of their application. The book is not intended to explore the mathematics of Hamiltonian Systems, but may be useful to mathematicians in a great deal of circumstances as a reference on the practical application of the theories. In the same way, it may be a source book on the problems of degeneracy and small divisors, which affect the use of perturbation theories as well in Celestial Mechanics as in Physics.
Digital forensics has recently gained a notable development and become the most demanding area in today's information security requirement. This book investigates the areas of digital forensics, digital investigation and data analysis procedures as they apply to computer fraud and cybercrime, with the main objective of describing a variety of digital crimes and retrieving potential digital evidence. Big Data Analytics and Computing for Digital Forensic Investigations gives a contemporary view on the problems of information security. It presents the idea that protective mechanisms and software must be integrated along with forensic capabilities into existing forensic software using big data computing tools and techniques. Features Describes trends of digital forensics served for big data and the challenges of evidence acquisition Enables digital forensic investigators and law enforcement agencies to enhance their digital investigation capabilities with the application of data science analytics, algorithms and fusion technique This book is focused on helping professionals as well as researchers to get ready with next-generation security systems to mount the rising challenges of computer fraud and cybercrimes as well as with digital forensic investigations. Dr Suneeta Satpathy has more than ten years of teaching experience in different subjects of the Computer Science and Engineering discipline. She is currently working as an associate professor in the Department of Computer Science and Engineering, College of Bhubaneswar, affiliated with Biju Patnaik University and Technology, Odisha. Her research interests include computer forensics, cybersecurity, data fusion, data mining, big data analysis and decision mining. Dr Sachi Nandan Mohanty is an associate professor in the Department of Computer Science and Engineering at ICFAI Tech, ICFAI Foundation for Higher Education, Hyderabad, India. His research interests include data mining, big data analysis, cognitive science, fuzzy decision-making, brain-computer interface, cognition and computational intelligence.
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.
NMR DATA PROCESSING Jeffrey C. Hoch and Alan S. Stern Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful nondestructive technique for exploring the structure of matter. In recent years, NMR instrumentation has become increasingly sophisticated, and the software used to acquire and process NMR data continues to expand in scope and complexity. This software has always been difficult to understand, and, until now, it seemed likely to remain that way. NMR Data Processing examines and explains the techniques used to process, present, and analyze NMR data. It provides a complete account of the fundamentals of spectrum analysis and establishes a framework for applying those fundamentals to real NMR data. It also details, in clear and concise language, the basic principles underlying the complex software needed to analyze the data. Two chapters are devoted to the fundamentals and applications of discrete Fourier transform (DFT) in NMR, which was crucial to the development of modern NMR spectroscopy. A large part of the book focuses on increasingly important non-DFT methods, which obtain higher sensitivity and resolution. Other topics covered include:
Jeffrey C. Hoch and Alan S. Stern conclude their in-depth look at this rapidly growing field by exploring methods for analyzing processed data, including visualization, quantification, and error analysis. Readers are provided with a solid foundation for developing new methods of their own. NMR Data Processing is an important tool for students learning basic principles for the first time, technicians troubleshooting data processing problems, and professional researchers developing new techniques. It will help all NMR users acquire a true grasp of the methods behind the process, avoid the pitfalls of misapplication and misinterpretation, and exploit the full power of NMR software.
This book systematically introduces the theory of nonlinear analysis, providing an overview of topics such as geometry of Banach spaces, differential calculus in Banach spaces, monotone operators, and fixed point theorems. It also discusses degree theory, nonlinear matrix equations, control theory, differential and integral equations, and inclusions. The book presents surjectivity theorems, variational inequalities, stochastic game theory and mathematical biology, along with a large number of applications of these theories in various other disciplines. Nonlinear analysis is characterised by its applications in numerous interdisciplinary fields, ranging from engineering to space science, hydromechanics to astrophysics, chemistry to biology, theoretical mechanics to biomechanics and economics to stochastic game theory. Organised into ten chapters, the book shows the elegance of the subject and its deep-rooted concepts and techniques, which provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in diverse applied fields. It is intended for graduate and undergraduate students of mathematics and engineering who are familiar with discrete mathematical structures, differential and integral equations, operator theory, measure theory, Banach and Hilbert spaces, locally convex topological vector spaces, and linear functional analysis.
A computer algebra system such as Mathematica (R) is able to do much more than just numerics: This text shows how to tackle real mathematical problems from basic analysis. The reader learns how Mathematica (R) represents domains, qualifiers and limits to implement actual proofs - a requirement to unlock the huge potential of Mathematica (R) for a variety of applications.
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions, Methods of Solving Sequences and Series Problems is an ideal resource for those learning calculus, preparing for mathematics competitions, or just looking for a worthwhile challenge. It can also be used by faculty who are looking for interesting and insightful problems that are not commonly found in other textbooks.
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Introductory Mathematical Analysis for Quantitative Finance is a textbook designed to enable students with little knowledge of mathematical analysis to fully engage with modern quantitative finance. A basic understanding of dimensional Calculus and Linear Algebra is assumed. The exposition of the topics is as concise as possible, since the chapters are intended to represent a preliminary contact with the mathematical concepts used in Quantitative Finance. The aim is that this book can be used as a basis for an intensive one-semester course. Features: Written with applications in mind, and maintaining mathematical rigor. Suitable for undergraduate or master's level students with an Economics or Management background. Complemented with various solved examples and exercises, to support the understanding of the subject.
The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skills of geometric intuition (the visual cortex being quickly instinctive) algebraic manipulation (symbol-patterns being precise and robust) incisive use of natural language (slogans that encapsulate central ideas enabling a large-scale grasp of the subject). Thinking in these ways renders mathematics coherent, inevitable, and fluid. The prerequisite is single-variable calculus, including familiarity with the foundational theorems and some experience with proofs.
"This book presents a functional calculus for "n"-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions."
Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics."
This introductory text combines models from physics and biology with rigorous reasoning in describing the theory of ordinary differential equations along with applications and computer simulations with Maple. Offering a concise course in the theory of ordinary differential equations, it also enables the reader to enter the field of computer simulations. Thus, it is a valuable read for students in mathematics as well as in physics and engineering. It is also addressed to all those interested in mathematical modeling with ordinary differential equations and systems. Contents Part I: Theory Chapter 1 First-Order Differential Equations Chapter 2 Linear Differential Systems Chapter 3 Second-Order Differential Equations Chapter 4 Nonlinear Differential Equations Chapter 5 Stability of Solutions Chapter 6 Differential Systems with Control Parameters Part II: Exercises Seminar 1 Classes of First-Order Differential Equations Seminar 2 Mathematical Modeling with Differential Equations Seminar 3 Linear Differential Systems Seminar 4 Second-Order Differential Equations Seminar 5 Gronwall's Inequality Seminar 6 Method of Successive Approximations Seminar 7 Stability of Solutions Part III: Maple Code Lab 1 Introduction to Maple Lab 2 Differential Equations with Maple Lab 3 Linear Differential Systems Lab 4 Second-Order Differential Equations Lab 5 Nonlinear Differential Systems Lab 6 Numerical Computation of Solutions Lab 7 Writing Custom Maple Programs Lab 8 Differential Systems with Control Parameters
This book is a comprehensive and systematic account of the theory of p-adic and classical modular forms and the theory of the special values of arithmetic L-functions and p-adic L-functions. The approach is basically algebraic, and the treatment is elementary. No deep knowledge from algebraic geometry and representation theory is required. The author's main tool in dealing with these problems is taken from cohomology theory over Riemann surfaces, which is also explained in detail in the book. He also gives a concise but thorough treatment of analytic continuation and functional equation. Graduate students wishing to know more about L-functions will find this a unique introduction to this fascinating branch of mathematics.
This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Ito's formula, the optional stopping theorem and Girsanov's theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Ito, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus. |
You may like...
Data Analysis and Data Mining - An…
Adelchi Azzalini, Bruno Scarpa
Hardcover
R3,280
Discovery Miles 32 800
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
|