![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
Pierre Grisvard, one of the most distinguished French mathematicians, died on April 22, 1994. A Conference was held in November 1994 out of which grew the invited articles contained in this volume. All of the papers are related to functional analysis applied to partial differential equations, which was Grisvard's specialty. Indeed his knowledge of this area was extremely broad. He began his career as one of the very first students of Jacques Louis Lions, and in 1965, he presented his "State Thesis" on interpolation spaces, using in particular, spectral theory for linear operators in Banach spaces. After 1970, he became a specialist in the study of optimal regularity for par tial differential equations with boundary conditions. He studied singulari ties coming from coefficients, boundary conditions, and mainly non-smooth domains, and left a legacy of precise results which have been published in journals and books. Pierre Grisvard spent most of his career as a full professor at the University of Nice, where he started in 1967. For shorter or longer periods, he visited several foreign countries, and collaborated with some of the most famous mathematicians in his field. He was also an excellent organizer and directed a large number of Ph.D. students. Finally, this volume contains a bibliography of Grisvard's works as well as one paper which he wrote and which has not been published before."
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume two include curves and vector bundles in p-adic Hodge theory, associators, Shimura varieties, the birational section conjecture, and other topics of contemporary interest.
In this volume selected papers delivered at the special session on "Spectral and scattering theory" are published. This session was organized by A. G. Ramm at the first international congress ofISAAC (International Society for Analysis, Applications and Computing) which was held at the University of Delaware, June 3-7, 1997. The papers in this volume deal with a wide va riety of problems including some nonlinear problems (Schechter, Trenogin), control theory (Shubov), fundamental problems of physics (Kitada), spectral and scattering theory in waveg uides and shallow ocean (Ramm and Makrakis), inverse scattering with incomplete data (Ramm), spectral theory for Sturm-Liouville operators with singular coefficients (Yurko) and with energy-dependent coefficients (Aktosun, Klaus, and van der Mee), spectral theory of SchrOdinger operators with periodic coefficients (Kuchment, Vainberg), resolvent estimates for SchrOdinger-type and Maxwell's operators (Ben-Artzi and Nemirovsky), SchrOdinger oper ators with von Neumann-Wignertype potentials (Rejto and Taboada), principal eigenvalues for indefinite-weight elliptic operators (pinchover), and symmetric solutions of Ginzburg-Landau equations (Gustafson). These papers will be of interest to a wide audience including mathematicians, physicists, and theoretically oriented engineers. A. G. Ramm Manhattan, KS v CONTENTS 1. Wave Scattering in 1-0 Nonconservative Media . . . . . . . . . . . . . . . . . . . Tuncay Aktosun, Martin Klaus, and Comelis van der Mee 2. Resolvent Estimates for SchrOdinger-type and Maxwell Equations with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Matania Ben-Artzi and Jonathan Nemirovsky 3. Symmetric Solutions of Ginzburg-Landau Equations 33 S. Gustafson 4. Quantum Mechanics and Relativity: Their Unification by Local Time . . . . . . . 39 Hitoshi Kitada 5."
The present book contains three articles: "Systems of Linear Differential Equations," by V. P. Palamodov; "Fredholm Operators and Their Generalizations," by S. N. Krachkovskii and A. S. Di kanskii; and "Representations of Groups and Algebras in Spaces with an Indefinite Metric" by M. A. Naimark and R. S. Ismagilov. In the fi.rst article the accent is on those characteristics of systems of differential equations which distinguish the systems from the scalar case. Considerable space is devoted in particular to "nonquadratic systems," a topic that has very recently stimulated interest. The second article is devoted to the algebraic aspects of the theory of operators (determinant theory in particular) in Banach and linear topological spaces. The third article reflects the present state of the art in the given area of the theory of representations, which has been re ceiving considerable attention in connection with its applications in physics (particularly in quantum field theory) and in the theory of differential equations."
In the first half of the 19th century geometry changed radically, and withina century it helped to revolutionize both mathematics and physics. It also put the epistemology and the philosophy of science on a new footing. In this volume a sound overview of this development is given by leading mathematicians, physicists, philosophers, and historians of science. This interdisciplinary approach gives this collection a unique character. It can be used by scientists and students, but it also addresses a general readership.
Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange s reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems."
This selection of outstanding articles - an outgrowth of the QMath9 meeting for young scientists - covers new techniques and recent results on spectral theory, statistical mechanics, Bose-Einstein condensation, random operators, magnetic Schroedinger operators and more. The book's pedagogical style makes it a useful introduction to the research literature for postgraduate students. For more expert researchers it will serve as a concise source of modern reference.
A long long time ago, echoing philosophical and aesthetic principles that existed since antiquity, William of Ockham enounced the principle of parsimony, better known today as Ockham's razor: "Entities should not be multiplied without neces sity. " This principle enabled scientists to select the "best" physical laws and theories to explain the workings of the Universe and continued to guide scienti?c research, leadingtobeautifulresultsliketheminimaldescriptionlength approachtostatistical inference and the related Kolmogorov complexity approach to pattern recognition. However, notions of complexity and description length are subjective concepts anddependonthelanguage"spoken"whenpresentingideasandresults. The?eldof sparse representations, that recently underwent a Big Bang like expansion, explic itly deals with the Yin Yang interplay between the parsimony of descriptions and the "language" or "dictionary" used in them, and it became an extremely exciting area of investigation. It already yielded a rich crop of mathematically pleasing, deep and beautiful results that quickly translated into a wealth of practical engineering applications. You are holding in your hands the ?rst guide book to Sparseland, and I am sure you'll ?nd in it both familiar and new landscapes to see and admire, as well as ex cellent pointers that will help you ?nd further valuable treasures. Enjoy the journey to Sparseland! Haifa, Israel, December 2009 Alfred M. Bruckstein vii Preface This book was originally written to serve as the material for an advanced one semester (fourteen 2 hour lectures) graduate course for engineering students at the Technion, Israel.
The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note- worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu- bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application.
The purpose of this book is to give an introduction to the Laplace transform on the undergraduate level. The material is drawn from notes for a course taught by the author at the Milwaukee School of Engineering. Based on classroom experience, an attempt has been made to (1) keep the proofs short, (2) introduce applications as soon as possible, (3) concentrate on problems that are difficult to handle by the older classical methods, and (4) emphasize periodic phenomena. To make it possible to offer the course early in the curriculum (after differential equations), no knowledge of complex variable theory is assumed. However, since a thorough study of Laplace. transforms requires at least the rudiments of this theory, Chapter 3 includes a brief sketch of complex variables, with many of the details presented in Appendix A. This plan permits an introduction of the complex inversion formula, followed by additional applications. The author has found that a course taught three hours a week for a quarter can be based on the material in Chapters 1, 2, and 5 and the first three sections of Chapter 7. If additional time is available (e.g., four quarter-hours or three semester-hours), the whole book can be covered easily. The author is indebted to the students at the Milwaukee School of Engineering for their many helpful comments and criticisms.
Coding theory, system theory, and symbolic dynamics have much in common. A major new theme in this area of research is that of codes and systems based on graphical models. This volume contains survey and research articles from leading researchers at the interface of these subjects.
In this volume nonlinear systems related to integrable systems are studied. Lectures cover such topics as the application of integrable systems to the description of natural phenomena, the elaboration of perturbation theories, and the statistical mechanics of ensembles of objects obeying integrable equations. The more physical lectures center largely around the three paradigmatic equations: Korteweg de Vries, Sine-Gordon and Nonlinear Schroedinger, especially the latter. These have long been of great mathematical interest, and also exhibit a "universality" which places them among the most frequently encountered integrable equations in the description of physical systems. Tidal waves, optical fibers and laser beams are among the topics discussed. Lectures are also devoted to multidimensional solitons, integrability of Hamiltonian systems of ODEs and dissipative systems of PDEs.
Under the guidance and inspiration of Dr. Ajit Iqbal Singh, an International Conference on Harmonie Analysis took place at the Uni- versity of Delhi, India, from December 18 to 22, 1995. Twenty-one dis- tinguished mathematicians from around the world, as weIl as many from India, participated in this successful and stimulating conference. An underlying theme of the conference was hypergroups, the the- ory of wh ich has developed and been found useful in fields as diverse as special functions, differential equations, probability theory, representa- tion theory, measure theory, Hopf algebras and quantum groups. Some other areas of emphasis that emerged were harmonie analysis of analytic functions, ergo die theory and wavelets. This book includes most of the proceedings of this conference. I chaired the Editorial Board for this publication; the other members were J. M. Anderson (University College London), G. L. Litvinov (Centre for Optimization and Mathematical Modeling, Institute for New Technolo- gies, Moscow), Mrs. A. I. Singh (University ofDelhi, India), V. S. Sunder (Institute of Mathematical Sciences, C.LT., Madras, India), and N. J. Wildberger (University of New South Wales, Australia). I appreciate all the help provided by these editors as weIl as the help and cooperation of Our authors and referees of their papers. I especially appreciate techni- cial assistance and advice from Alan L. Schwartz (University of Missouri - St. Louis, USA) and Martin E. Walter (University of Colorado, USA). Finally, I thank Our editor, Ann Kostant, for her help and encouragement during this project.
The International Symposium on Generalized Functions and Their Applications was organized by the Department of Mathematics, Banaras Hindu University, and held December 23-26, 1991, on the occasion of the Platinum Jubilee Celebration of the university. More than a hundred mathematicians from ten countries participated in the deliberations of the symposium. Thirty lectures were delivered on a variety of topics within the area. The contributions to the proceedings of the symposium are, with a few exceptions, expanded versions of the lectures delivered by the invited speakers. The survey papers by Komatsu and Hoskins and Sousa Pinto provide an up-to-date account of the theory of hyperfunctions, ultradistributions and microfunctions, and the nonstandard theory of new generalized functions, respectively; those by Stankovic and Kanwal deal with structures and asymptotics. Choquet-Bruhat's work studies generalized functions on manifold and gives applications to shocks and discrete models. The other contributions relate to contemporary problems and achievements in theory and applications, especially in the theory of partial differential equations, differential geometry, mechanics, mathematical physics, and systems science. The proceedings give a very clear impression of the present state of the art in this field and contain many challenges, ideas, and open problems. The volume is very helpful for a broad spectrum of readers: graduate students to mathematical researchers.
This book contains survey papers based on the lectures presented at the 3rd International Winter School "Modern Problems of Mathematics and Mechanics" held in January 2010 at the Belarusian State University, Minsk. These lectures are devoted to different problems of modern analysis and its applications. An extended presentation of modern problems of applied analysis will enable the reader to get familiar with new approaches of mostly interdisciplinary character. The results discussed are application oriented and present new insight into applied problems of growing importance such as applications to composite materials, anomalous diffusion, and fluid dynamics.
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples."
This book collects the Proceedings of a Congress held in Frascati (Rome) in the period July 1 -July 10, 1991, on the subject of harmonic analysis and discrete potential theory, and related topics. The Congress was made possible by the financial support of the Italian National Research Council ("Gruppo GNAFA"), the Ministry of University ("Gruppo Analisi Funzionale" of the University of Milano), the University of Rome "Tor Vergata", and was also patronized by the Centro "Vito Volterra" of the University of Rome "Tor Vergata". Financial support for publishing these Proceedings was provided by the University of Rome "Tor Vergata", and by a generous contribution of the Centro "Vito Volterra". I am happy of this opportunity to acknowledge the generous support of all these Institutions, and to express my gratitude, and that of all the participants. A number of distinguished mathematicians took part in the Congress. Here is the list of participants: M. Babillot, F. Choucroun, Th. Coulhon, L. Elie, F. Ledrappier, N. Th. Varopoulos (Paris); L. Gallardo (Brest); Ph. Bougerol, B. Roynette (Nancy); O. Gebuhrer (Strasbourg); G. Ahumada-Bustamante (Mulhouse); A. Valette (Neuchatel); P. Gerl (Salzburg); W. Hansen, H. Leptin (Bielefeld); M. Bozejko, A. Hulanicki, T. Pytlik (Wroclaw); C. Thomassen (Lyngby); P. Sjogren (Goteborg); V. Kaimanovich (Leningrad); A. Nevo (Jerusalem); T. Steger (Chicago); S. Sawyer, M. Taibleson, G. Weiss (St. Louis); J. Cohen, S. S ali ani (Maryland); D. Voiculescu (Berkeley); A. Zemanian (Stony Brook); S. Northshield (Plattsburgh); J. Taylor (Montreal); J.
"This book presents a functional calculus for "n"-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions."
Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory, hypercomplex analysis, and mathematical physics."
Despite the fact that Maple is one of the most popular computer algebra systems on the market, surprisingly few users realise its potential for scientific visualisation. This book equips readers with the graphics tools needed on the voyage into the complex and beautiful world of curves and surfaces. A comprehensive treatment of Maples graphics commands and structures is combined with an introduction to the main aspects of visual perception, with priority given to the use of light, colour, perspective, and geometric transformations. Numerous examples cover all aspects of Maple graphics, and these may be easily tailored to the individual needs of the reader. The approach is context-independent, and as such will appeal to students, educators, and researchers in a broad spectrum of scientific disciplines. For the general user at any level of experience, this book will serve as a comprehensive reference manual. For the beginner, it offers a user-friendly introduction to the subject, with mathematical requirements kept to a minimum, while, for those interested in advanced mathematical visualisation, it explains how to maximise Maples graphical capabilities.
A development of some of the principal applications of function theory in several complex variables to Banach algebras. The authors do not presuppose any knowledge of several complex variables on the part of the reader, and all relevant material is developed within the text. Furthermore, the book deals with problems of uniform approximation on compact subsets of the space of n complex variables. This third edition contains new material on maximum modulus algebras and subharmonicity, the hull of a smooth curve, integral kernels, perturbations of the Stone-Weierstrass Theorem, boundaries of analytic varieties, polynomial hulls of sets over the circle, areas, and the topology of hulls. The authors have also included a new chapter commenting on history and recent developments, as well as an updated and expanded reading list.
Dirac's formalism of quantum mechanics was always praised for its elegance. This book introduces the student to its mathematical foundations and demonstrates its ease of applicability to problems in quantum physics. The book starts by describing in detail the concept of Gel'fand triplets and how one can make use of them to make the Dirac heuristic approach rigorous. The results are then deepened by giving the analytic tools, such as the Hardy class function and Hilbert and Mellin transforms, needed in applications to physical problems. Next, the RHS model for decaying states based on the concept of Gamow vectors is presented. Applications are given to physical theories of such phenomena as decaying states and resonances.
The shared purpose in this collection of papers is to apply the theory of self-adjoint extensions of symmetry operators in various areas of physics. This allows the construction of exactly solvable models in quantum mechanics, quantum field theory, high energy physics, solid-state physics, microelectronics and other fields. The 20 papers selected for these proceedings give an overview of this field of research unparallelled in the published literature; in particular the views of the leading schools are clearly presented. The book will be an important source for researchers and graduate students in mathematical physics for many years to come. In these proceedings, researchers and graduate students in mathematical physics will find ways to construct exactly solvable models in quantum mechanics, quantum field theory, high energy physics, solid-state physics, microelectronics and other fields.
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support. |
You may like...
Singular Elliptic Problems - Bifurcation…
Marius Ghergu, Vicentiu Radulescu
Hardcover
R2,808
Discovery Miles 28 080
Multivariable Calculus, Metric Edition
Daniel K Clegg, James Stewart, …
Hardcover
Unified Transform for Boundary Value…
Anthanasios S. Fokas, Beatrice Pelloni
Paperback
R2,610
Discovery Miles 26 100
|