![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Vector & tensor analysis
This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the College de France in Paris. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.
On March 17-19 and May 19-21,1995, analysis seminars were organized jointly at the universities of Copenhagen and Lund, under the heading "Danish-Swedish Analysis Seminar". The main topic was partial differen- tial equations and related problems of mathematical physics. The lectures given are presented in this volume, some as short abstracts and some as quite complete expositions or survey papers. They span over a large vari- ety of topics. The most frequently occurring theme is the use of microlocal analysis which is now important also in the study of non-linear differential equations although it originated entirely within the linear theory. Perhaps it is less surprising that microlocal analysis has proved to be useful in the study of mathematical problems of classical quantum mechanics, for it re- ceived a substantial input of ideas from that field. The scientific committee for the invitation of speakers consisted of Gerd Grubb in Copenhagen, Lars Hormander and Anders MeHn in Lund, and Jo- hannes Sjostrand in Paris. Lars Hormander and Anders Melin have edited the proceedings. They were hosts of the seminar days in Lund while Gerd Grubb was the host in Copenhagen. Financial support was obtained from the mathematics departments in Copenhagen and Lund, CNRS in France, the Danish and Swedish Na- tional Research Councils, Gustaf Sigurd Magnuson's foundation at the Royal Swedish Academy of Sciences, and the Wenner-Gren foundation in Stockholm. We want to thank all these organisations for their support.
Differential equations is a subject of wide applicability, and knowledge of dif Differential equations is a subject of wide applicability, and knowledge of dif ferential ferential equations equations topics topics permeates permeates all all areas areas of of study study in in engineering engineering and and applied applied mathematics. mathematics. Some Some differential differential equations equations are are susceptible susceptible to to analytic analytic means means of of so so lution, lution, while while others others require require the the generation generation of of numerical numerical solution solution trajectories trajectories to to see see the the behavior behavior of of the the system system under under study. study. For For both both situations, situations, the the software software package package Maple Maple can can be be used used to to advantage. advantage. To To the the student student Making Making effective effective use use of of differential differential equations equations requires requires facility facility in in recognizing recognizing and and solving solving standard standard "tractable" "tractable" problems, problems, as as well well as as having having the the background background in in the the subject subject to to make make use use of of tools tools for for dealing dealing with with situations situations that that are are not not amenable amenable to to simple simple analytic analytic approaches. approaches.
Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable models for further mathematical analysis or computer simulations. For the most part, derivations are based on perturbation methods, and the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro-differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added.
This monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585-1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations.
This book explores the theory of strongly continuous one-parameter semigroups of linear operators. A special feature of the text is an unusually wide range of applications such as to ordinary and partial differential operators, to delay and Volterra equations, and to control theory. Also, the book places an emphasis on philosophical motivation and the historical background.
A cognitive journey towards the reliable simulation of scattering problems using finite element methods, with the pre-asymptotic analysis of Galerkin FEM for the Helmholtz equation with moderate and large wave number forming the core of this book. Starting from the basic physical assumptions, the author methodically develops both the strong and weak forms of the governing equations, while the main chapter on finite element analysis is preceded by a systematic treatment of Galerkin methods for indefinite sesquilinear forms. In the final chapter, three dimensional computational simulations are presented and compared with experimental data. The author also includes broad reference material on numerical methods for the Helmholtz equation in unbounded domains, including Dirichlet-to-Neumann methods, absorbing boundary conditions, infinite elements and the perfectly matched layer. A self-contained and easily readable work.
Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.
The Workshop on Operator Theory and Boundary Eigenvalue Problems was held at the Technical University, Vienna, Austria, July 27 to 30, 1993. It was the seventh workshop in the series of IWOTA (International Workshops on Operator Theory and Applications). The main topics at the workshop were interpolation problems and analytic matrix functions, operator theory in spaces with indefinite scalar products, boundary value problems for differential and functional-differential equations and systems theory and control. The workshop covered different aspects, starting with abstract operator theory up to contrete applications. The papers in these proceedings provide an accurate cross section of the lectures presented at the workshop. This book will be of interest to a wide group of pure and applied mathematicians.
Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics.
This volume and its companion present a selection of the mathematical writings of P. R. Halmos. The present volume consists of research publications plus two papers which, although of a more expository nature, were deemed primarily of interest to the specialist ("Ten Problems in Hilbert Space" (1970d), and" Ten Years in Hilbert Space" (1979b)). The remaining expository and all the popular writings are in the second volume. The papers in the present volume are arranged chronologically. As it happens, that arrangement also groups the papers according to subject matter: those published before 1950 deal with probability and measure theory, those after 1950 with operator theory. A series of papers from the mid 1950's on algebraic logic is excluded; the papers were republished by Chelsea (New York) in 1962 under the title" Algebraic Logic." This volume contains two introductory essays, one by Nathaniel Friedman on Halmos's work in ergodic theory, one by Donald Sarason on Halmos's work in operator theory. There is an essay by Leonard Gillman on Halmos's expository and popular writings in the second volume. The editors wish to express their thanks to the staff of Springer-Verlag. They are grateful also for the help of the following people: C. Apostol, W. B. Arveson, R. G. Douglas, C. Pearcy, S. Popa, P. Rosenthal, A. L. Shields, D. Voiculescu, S. Walsh. Berkeley, CA Donald E. Sarason vii WORK IN OPERATOR THEORY P. R. Halmos's first papers on Hilbert space operators appeared in 1950.
After the book "Basic Operator Theory" by Gohberg-Goldberg was pub lished, we, that is the present authors, intended to continue with another book which would show the readers the large variety of classes of operators and the important role they play in applications. The book was planned to be of modest size, but due to the profusion of results in this area of analysis, the number of topics grew larger than ex pected. Consequently, we decided to divide the material into two volumes - the first volume being presented now. During the past years, courses and seminars were given at our respective in stitutions based on parts of the texts. These were well received by the audience and enabled us to make appropriate choices for the topics and presentation for the two vol umes. We would like to thank G.J. Groenewald, A.B. Kuijper and A.C.M. Ran of the Vrije Universiteit at Amsterdam, who provided us with lists of remarks and corrections. We are now aware that the Basic Operator Theory book should be revised so that it may suitably fit in with our present volumes. This revision is planned to be the last step of an induction and not the first."
Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.
Nonlinear complex open systems show great diversity in the process of self-organization, and that diversity increases as complexity increases. The measurement of complexity and the origins of the diversity of such complex systems are the focus of interdisciplinary studies extending across a wide range of scientific disciplines that include applied mathematics, physics, chemistry, biology, psychology, ecology, sociology, and economics. Previous investigations have concentrated either on complexity or on diversity, but not both. This volume makes clear the relation between complexity and diversity with examples drawn from various disciplines. Compiles here are presentations from the Complexity and Diversity workshop held in Fugue, Japan, in August 1996. The contributions are the results of research in mathematical systems, physical systems, living systems, and social systems, and are contained in the four corresponding sections of the book. Mathematical expressions for the theory of complexity as a fundamental method along with realistic examples for application of systematic methods provide the reader with ready access to the latest topics in complex systems.
The Handbook of Feynman Path Integrals appears just fifty years after Richard Feynman published his pioneering paper in 1948 entitled "Space-Time Approach to Non-Relativistic Quantum Mechanics", in which he introduced his new formulation of quantum mechanics in terms of path integrals. The book presents for the first time a comprehensive table of Feynman path integrals together with an extensive list of references; it will serve the reader as a thorough introduction to the theory of path integrals. As a reference book, it is unique in its scope and will be essential for many physicists, chemists and mathematicians working in different areas of research.
A modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasising harmonic analysis on topological groups. The main goal is to cover John Tates visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries -- technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the existing treatments of Tates thesis are somewhat terse and less than complete, the intent here is to be more leisurely, more comprehensive, and more comprehensible. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups. The text addresses students who have taken a year of graduate-level course in algebra, analysis, and topology. Moreover, the work will act as a good reference for working mathematicians interested in any of these fields.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences ( AMS) series, which will focus on advanced textbooks and research level monographs. Foreword This book is based on a one-semester course for graduate students in the physical sciences and applied mathematics. No great mathematical back ground is needed, but the student should be familiar with the theory of analytic functions of a complex variable. Since the course is on problem solving rather than theorem-proving, the main requirement is that the stu dent should be willing to work out a large number of specific examples."
Pure and applied stochastic analysis and random fields form the subject of this book. The collection of articles on these topics represent the state of the art of the research in the field, with particular attention being devoted to stochastic models in finance. Some are review articles, others are original papers; taken together, they will apprise the reader of much of the current activity in the area.
Is the exponential function computable? Are union and intersection of closed subsets of the real plane computable? Are differentiation and integration computable operators? Is zero finding for complex polynomials computable? Is the Mandelbrot set decidable? And in case of computability, what is the computational complexity? Computable analysis supplies exact definitions for these and many other similar questions and tries to solve them. - Merging fundamental concepts of analysis and recursion theory to a new exciting theory, this book provides a solid basis for studying various aspects of computability and complexity in analysis. It is the result of an introductory course given for several years and is written in a style suitable for graduate-level and senior students in computer science and mathematics. Many examples illustrate the new concepts while numerous exercises of varying difficulty extend the material and stimulate readers to work actively on the text.
This special volume is dedicated to Boris M. Mordukhovich, on the occasion of his 60th birthday, and aims to celebrate his fundamental contributionsto variational analysis, generalizeddifferentiationand their applications.A main exampleof these contributions is Boris' recent opus magnus "Variational Analysis and Generalized Differentiation"(vols. I and II) [2,3]. A detailed explanationand careful description of Boris' research and achievements can be found in [1]. Boris' active work and jovial attitude have constantly inspired researchers of several generations, with whom he has generously shared his knowledgeand ent- siasm, along with his well-known warmth and human touch. Variationalanalysis is a rapidlygrowing?eld within pure and applied mathem- ics, with numerous applications to optimization, control theory, economics, en- neering, and other disciplines. Each of the 12 chapters of this volume is a carefully reviewed paper in the ?eld of variational analysis and related topics. Many chapters of this volume were presented at the International Symposium on Variational Analysis and Optimization (ISVAO), held in the Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan, from November 28 to November 30, 2008. The symposium was organized in honour of Boris' 60thbirthday.It broughttogetherBorisandotherresearchersto discusssta- of-the-art results in variational analysis and its applications, with emphasis on op- mization and control. We thank the organizers and participants of the symposium, who made the symposium a highly bene?cial and enjoyable event. We are also grateful to all the authors of this special volume, who have taken the opportunityto celebrate Boris' birthdayand his decadesof contributionsto the area.
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book's improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Edmund Hlawka is a leading number theorist whose work has had a lasting influence on modern number theory and other branches of mathematics. He has contributed to diophantine approximation, the geometry of numbers, uniform distributions, analytic number theory, discrete geometry, convexity, numerical integration, inequalities, differential equations and gas dynamics. Of particular importance are his findings in the geometry of numbers (especially the Minkowski-Hlawka theorem) and uniform distribution. This Selecta volume collects his most important articles, many of which were previously hard to find. It will provide a useful tool for researchers and graduate students working in the areas covered, and includes a general introduction by E. Hlawka.
'Et moi ..... si j'avait su comment en revenir, One service mathematics bas rendered the je n'y serais point aile: human race. It bas put common sense: back Jules Verne where it belongs, on the topmost shelf next 10 tile dusty canister labelled 'discarded 1lOII- The series is divergent; thCldorc we may be ICDIC'. able 10 do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' tre of this series."
This book serves as an elementary, self contained introduction into some important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The presentation is made using the classical method of continuation of local solutions with the help of a priori estimates obtained for small data.
This book is based on a one year course of lectures on structural sta bility of differential equations which the author has given for the past several years at the Department of Mathematics and Mechanics at the University of Leningrad. The theory of structural stability has been developed intensively over the last 25 years. This theory is now a vast domain of mathematics, having close relations to the classical qualitative theory of differential equations, to differential topology, and to the analysis on manifolds. Evidently it is impossible to present a complete and detailed account of all fundamental results of the theory during a one year course. So the purpose of the course of lectures (and also the purpose of this book) was more modest. The author was going to give an introduction to the language of the theory of structural stability, to formulate its principal results, and to introduce the students (and also the readers of the book) to some of the main methods of this theory. One can select two principal aspects of modern theory of structural stability (of course there are some conventions attached to this state ment). The first one, let us call it the "geometric" aspect, deals mainly with the description of the picture of trajectories of a system; and the second, let us say the "analytic" one, has in its centre the method for solving functional equations to find invariant manifolds, conjugating homeomorphisms, and so forth." |
You may like...
Human Resource Management In Government…
E. van der Westhuizen
Paperback
Brain Machine Interfaces for Space…
Luca Rossini, Dario Izzo
Hardcover
R4,841
Discovery Miles 48 410
Insightful Data Visualization with SAS…
Falko Schulz, Travis Murphy
Hardcover
R1,147
Discovery Miles 11 470
I Love Jesus, But I Want To Die - Moving…
Sarah J Robinson
Paperback
The Garden Within - Where The War With…
Dr. Anita Phillips
Hardcover
|