![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ Principia Mathematica, Volume 2; Principia Mathematica; Bertrand Russell Alfred North Whitehead, Bertrand Russell University Press, 1912 Logic, Symbolic and mathematical; Mathematics
This volume is number five in the 11-volume "Handbook of the
History of Logic." It covers the first 50 years of the development
of mathematical logic in the 20th century, and concentrates on the
achievements of the great names of the period--Russell, Post,
Godel, Tarski, Church, and the like. This was the period in which
mathematical logic gave mature expression to its four main parts:
set theory, model theory, proof theory and recursion theory.
Collectively, this work ranks as one of the greatest achievements
of our intellectual history. Written by leading researchers in the
field, both this volume and the Handbook as a whole are definitive
reference tools for senior undergraduates, graduate students and
researchers in the history of logic, the history of philosophy, and
any discipline, such as mathematics, computer science, and
artificial intelligence, for whom the historical background of his
or her work is a salient consideration.
This book gives a rigorous yet physics focused introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general rather than taking a philosophical-math-fundamental oriented approach that is commonly found in mathematical logic textbooks.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in logic, mathematics, philosophy, and computer science.
Nonstandard models of arithmetic are of interest to mathematicians through the presence of infinite (or nonstandard) integers and the various properties they inherit from the finite integers. Since their introduction in the 1930s (by Skolem and Goedel ), they have come to play an important role in model theory, and in combinatorics through independence results such as the Paris-Harrington theorem. This book is an introduction to these developments, and stresses the interplay between the first-order theory, recursion-theoretic aspects, and the structural properties of these models. Prerequisites have been kept to a minimum. A basic grounding in elementary model theory and a familiarity with the notions of recursive, primitive recursive, and r.e. sets will be sufficient. Consequently, the book should be suitable for postgraduate students coming to the subject for the first time and a variety of exercises of varying degrees of difficulty will help to further the reader's understanding. Beginning with Goedel's incompleteness theorem, the book covers the prime models, cofinal extensions, end extensions, Gaifman's construction of a definable type, Tennenbaum's theorem, Friedman's theorem and subsequent work on indicators, and culminates in a chapter on recursive saturation and resplendency.
What link might connect two far worlds like quantum theory and music? There is something universal in the mathematical formalism of quantum theory that goes beyond the limits of its traditional physical applications. We are now beginning to understand how some mysterious quantum concepts, like superposition and entanglement, can be used as a semantic resource.
Constructive mathematics – mathematics in which 'there exists' always means 'we can construct' – is enjoying a renaissance. fifty years on from Bishop's groundbreaking account of constructive analysis, constructive mathematics has spread out to touch almost all areas of mathematics and to have profound influence in theoretical computer science. This handbook gives the most complete overview of modern constructive mathematics, with contributions from leading specialists surveying the subject's myriad aspects. Major themes include: constructive algebra and geometry, constructive analysis, constructive topology, constructive logic and foundations of mathematics, and computational aspects of constructive mathematics. A series of introductory chapters provides graduate students and other newcomers to the subject with foundations for the surveys that follow. Edited by four of the most eminent experts in the field, this is an indispensable reference for constructive mathematicians and a fascinating vista of modern constructivism for the increasing number of researchers interested in constructive approaches.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities as well as their interactions with different ideational spectra. In all classical algebraic structures, the law of compositions on a given set are well-defined, but this is a restrictive case because there are situations in science where a law of composition defined on a set may be only partially defined and partially undefined, which we call NeutroDefined, or totally undefined, which we call AntiDefined. Theory and Applications of NeutroAlgebras as Generalizations of Classical Algebra introduces NeutroAlgebra, an emerging field of research. This book provides a comprehensive collection of original work related to NeutroAlgebra and covers topics such as image retrieval, mathematical morphology, and NeutroAlgebraic structure. It is an essential resource for philosophers, mathematicians, researchers, educators and students of higher education, and academicians.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
For thousands of years, mathematicians have used the timeless art of logic to see the world more clearly. In The Art of Logic, Royal Society Science Book Prize nominee Eugenia Cheng shows how anyone can think like a mathematician - and see, argue and think better. Learn how to simplify complex decisions without over-simplifying them. Discover the power of analogies and the dangers of false equivalences. Find out how people construct misleading arguments, and how we can argue back. Eugenia Cheng teaches us how to find clarity without losing nuance, taking a careful scalpel to the complexities of politics, privilege, sexism and dozens of other real-world situations. Her Art of Logic is a practical and inspiring guide to decoding the modern world.
|
You may like...
Key to Advanced Arithmetic for Canadian…
Barnard 1817-1876 Smith, Archibald McMurchy
Hardcover
R863
Discovery Miles 8 630
Analysis and Synthesis of Singular…
Zhiguang Feng, Jiangrong Li, …
Paperback
R2,570
Discovery Miles 25 700
Calculus for Engineering Students…
Jesus Martin Vaquero, Michael Carr, …
Paperback
R2,162
Discovery Miles 21 620
An Elementary Arithmetic [microform]
By a Committee of Teachers Supervised
Hardcover
R807
Discovery Miles 8 070
National Arithmetic in Theory and…
John Herbert 1831-1904 Sangster
Hardcover
R983
Discovery Miles 9 830
Emerging Applications of Fuzzy Algebraic…
Chiranjibe Jana, Tapan Senapati, …
Hardcover
R7,752
Discovery Miles 77 520
|