![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
A hands-on introduction to the tools needed for rigorous and
theoretical mathematical reasoning A complete chapter is dedicated to the different methods of
proof such as forward direct proofs, proof by contrapositive, proof
by contradiction, mathematical induction, and existence proofs. In
addition, the author has supplied many clear and detailed
algorithms that outline these proofs.
Fuzzy set and logic theory suggest that all natural language linguistic expressions are imprecise and must be assessed as a matter of degree. But in general membership degree is an imprecise notion which requires that Type 2 membership degrees be considered in most applications related to human decision making schemas. Even if the membership functions are restricted to be Type1, their combinations generate an interval - valued Type 2 membership. This is part of the general result that Classical equivalences breakdown in Fuzzy theory. Thus all classical formulas must be reassessed with an upper and lower expression that are generated by the breakdown of classical formulas.
This book collects and coherently presents the research that has been undertaken since the author's previous book Module Theory (1998). In addition to some of the key results since 1995, it also discusses the development of much of the supporting material. In the twenty years following the publication of the Camps-Dicks theorem, the work of Facchini, Herbera, Shamsuddin, Puninski, Prihoda and others has established the study of serial modules and modules with semilocal endomorphism rings as one of the promising directions for module-theoretic research. Providing readers with insights into the directions in which the research in this field is moving, as well as a better understanding of how it interacts with other research areas, the book appeals to undergraduates and graduate students as well as researchers interested in algebra.
Quantum mechanics is arguably one of the most successful scientific theories ever and its applications to chemistry, optics, and information theory are innumerable. This book provides the reader with a rigorous treatment of the main mathematical tools from harmonic analysis which play an essential role in the modern formulation of quantum mechanics. This allows us at the same time to suggest some new ideas and methods, with a special focus on topics such as the Wigner phase space formalism and its applications to the theory of the density operator and its entanglement properties. This book can be used with profit by advanced undergraduate students in mathematics and physics, as well as by confirmed researchers.
This book is an attempt to give a systematic presentation of both
logic and type theory from a categorical perspective, using the
unifying concept of fibred category. Its intended audience consists
of logicians, type theorists, category theorists and (theoretical)
computer scientists.
In real management situations, uncertainty is inherently present in decision making. As such, it is increasingly imperative to research and develop new theories and methods of fuzzy sets. Theoretical and Practical Advancements for Fuzzy System Integration is a pivotal reference source for the latest scholarly research on the importance of expressing and measuring fuzziness in order to develop effective and practical decision making models and methods. Featuring coverage on an expansive range of perspectives and topics, such as fuzzy logic control, intuitionistic fuzzy set theory, and defuzzification, this book is ideally designed for academics, professionals, and researchers seeking current research on theoretical frameworks and real-world applications in the area of fuzzy sets and systems.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
This proceedings volume documents the contributions presented at the conference held at Fairfield University and at the Graduate Center, CUNY in 2018 celebrating the New York Group Theory Seminar, in memoriam Gilbert Baumslag, and to honor Benjamin Fine and Anthony Gaglione. It includes several expert contributions by leading figures in the group theory community and provides a valuable source of information on recent research developments.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
Volume II of "Classical Recursion Theory" describes the universe
from a local (bottom-up
This book offers insight into the nature of meaningful discourse. It presents an argument of great intellectual scope written by an author with more than four decades of experience. Readers will gain a deeper understanding into three theories of the logos: analytic, dialectical, and oceanic. The author first introduces and contrasts these three theories. He then assesses them with respect to their basic parameters: necessity, truth, negation, infinity, as well as their use in mathematics. Analytic Aristotelian logic has traditionally claimed uniqueness, most recently in its Fregean and post-Fregean variants. Dialectical logic was first proposed by Hegel. The account presented here cuts through the dense, often incomprehensible Hegelian text. Oceanic logic was never identified as such, but the author gives numerous examples of its use from the history of philosophy. The final chapter addresses the plurality of the three theories and of how we should deal with it. The author first worked in analytic logic in the 1970s and 1980s, first researched dialectical logic in the 1990s, and discovered oceanic logic in the 2000s. This book represents the culmination of reflections that have lasted an entire scholarly career.
This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles
come first; these are then followed by articles from core classical
areas of proof theory; the handbook concludes with articles that
deal with topics closely related to computer science.
This book is a tribute to Professor Ewa Orlowska, a Polish logician who was celebrating the 60th year of her scientific career in 2017. It offers a collection of contributed papers by different authors and covers the most important areas of her research. Prof. Orlowska made significant contributions to many fields of logic, such as proof theory, algebraic methods in logic and knowledge representation, and her work has been published in 3 monographs and over 100 articles in internationally acclaimed journals and conference proceedings. The book also includes Prof. Orlowska's autobiography, bibliography and a trialogue between her and the editors of the volume, as well as contributors' biographical notes, and is suitable for scholars and students of logic who are interested in understanding more about Prof. Orlowska's work.
* The ELS model of enterprise security is endorsed by the Secretary of the Air Force for Air Force computing systems and is a candidate for DoD systems under the Joint Information Environment Program. * The book is intended for enterprise IT architecture developers, application developers, and IT security professionals. * This is a unique approach to end-to-end security and fills a niche in the market.
This accessible guide is intended for those persons who need to polish up their rusty maths, or who need to get a grip on the basics of the subject for the first time. Each concept is explained, with appropriate examples, and is applied in an exercise. The solutions to all exercises are set out in detail. The book uses informal conversational language and will change the perception that mathematics is only for special people. The author has taught the subject at different levels for many years.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest's research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism-the thesis that there exist true but inconsistent sentences-and paraconsistency-an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest's work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest's work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest's work and attest to its continued relevance and topicality. The book also includes Priest's responses to the contributors, providing a further layer to the development of these themes .
Now in a new edition --the classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal logic to give a full development of G del's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics."
There are many proposed aims for scientific inquiry - to explain or predict events, to confirm or falsify hypotheses, or to find hypotheses that cohere with our other beliefs in some logical or probabilistic sense. This book is devoted to a different proposal - that the logical structure of the scientist's method should guarantee eventual arrival at the truth, given the scientist's background assumptions. Interest in this methodological property, called "logical reliability", stems from formal learning theory, which draws its insights not from the theory of probability, but from the theory of computability. Kelly first offers an accessible explanation of formal learning theory, then goes on to develop and explore a systematic framework in which various standard learning-theoretic results can be seen as special cases of simpler and more general considerations. Finally, Kelly clarifies the relationship between the resulting framework and other standard issues in the philosophy of science, such as probability, causation, and relativism. Extensively illustrated with figures by the author, The Logic of Reliable Inquiry assumes only introductory knowledge of basic logic and computability theory. It is a major contribution to the literature and will be essential reading for scientists, statiticians, psychologists, linguists, logicians, and philosophers.
Berto's highly readable and lucid guide introduces students and the interested reader to Godel's celebrated "Incompleteness Theorem," and discusses some of the most famous - and infamous - claims arising from Godel's arguments.Offers a clear understanding of this difficult subject by presenting each of the key steps of the "Theorem" in separate chaptersDiscusses interpretations of the "Theorem" made by celebrated contemporary thinkersSheds light on the wider extra-mathematical and philosophical implications of Godel's theoriesWritten in an accessible, non-technical style |
You may like...
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
Quantum Theory Made Simple - Discover…
Theodore Giesselman
Hardcover
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
|