![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
Belief change is an emerging field of artificial intelligence and information science dedicated to the dynamics of information and the present book provides a state-of-the-art picture of its formal foundations. It deals with the addition, deletion and combination of pieces of information and, more generally, with the revision, updating and fusion of knowledge bases. The book offers an extensive coverage of, and seeks to reconcile, two traditions in the kinematics of belief that often ignore each other - the symbolic and the numerical (often probabilistic) approaches. Moreover, the work encompasses both revision and fusion problems, even though these two are also commonly investigated by different communities. Finally, the book presents the numerical view of belief change, beyond the probabilistic framework, covering such approaches as possibility theory, belief functions and convex gambles. The work thus presents a unified view of belief change operators, drawing from a widely scattered literature embracing philosophical logic, artificial intelligence, uncertainty modelling and database systems. The material is a clearly organised guide to the literature on the dynamics of epistemic states, knowledge bases and uncertain information, suitable for scholars and graduate students familiar with applied logic, knowledge representation and uncertain reasoning.
The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies."
This is the only monograph devoted to the expressibility of finitely axiomatizable theories, a classical subject in mathematical logic. The volume summarizes investigations in the field that have led to much of the current progress, treating systematically all positive results concerning expressibility. Also included in this unique text are solutions to both the Vaught-Morely problem and the Hanf problem, and a number of new natural questions that provide prospects for further development of the theory.
The parametric lambda calculus is a metamodel for reasoning about various kinds of computations. Its syntactic definition is based on the notion of "sets of input values," and different lambda calculi can be obtained from it by instantiating such sets in suitable ways. The parametric lambda calculus is used as a tool for presenting in a uniform way basic notions of programming languages, and for studying with a uniform approach some lambda calculi modeling different kinds of computations, such as call-by-name, both in its lazy and non-lazy versions, and call-by-value. The parametric presentation allows us both to prove in one step all the fundamental properties of different calculi, and to compare them with each other. The book includes some classical results in the field of lambda calculi, but completely rephrased using the parametric approach, together with some new results. The lambda calculi are presented from a computer science viewpoint, with particular emphasis on their semantics, both operational and denotational. This book is dedicated to researchers, and can be used as a textbook for masters or Ph.D. courses on the foundations of computer science.
In opposition to the classical set theory of natural language, Nov k's highly original monograph offers a theory based on alternative and fuzzy sets. This new approach is firmly grounded in semantics and pragmatics, and accounts for the vagueness inherent in natural language-filling a large gap in our current knowledge. The theory will foster fruitful debate among researchers in linguistics and artificial intellegence.
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties." This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized."
The popular literature on mathematical logic is rather extensive and written for the most varied categories of readers. College students or adults who read it in their free time may find here a vast number of thought-provoking logical problems. The reader who wishes to enrich his mathematical background in the hope that this will help him in his everyday life can discover detailed descriptions of practical (and quite often -- not so practical ) applications of logic. The large number of popular books on logic has given rise to the hope that by applying mathematical logic, students will finally learn how to distinguish between necessary and sufficient conditions and other points of logic in the college course in mathematics. But the habit of teachers of mathematical analysis, for example, to stick to problems dealing with sequences without limit, uniformly continuous functions, etc. has, unfortunately, led to the writing of textbooks that present prescriptions for the mechanical construction of definitions of negative concepts which seem to obviate the need for any thinking on the reader's part. We are most certainly not able to enumerate everything the reader may draw out of existing books on mathematical logic, however.
Starting at the very beginning with Aristotle's founding
contributions, logic has been graced by several periods in which
the subject has flourished, attaining standards of rigour and
conceptual sophistication underpinning a large and deserved
reputation as a leading expression of human intellectual effort. It
is widely recognized that the period from the mid-19th century
until the three-quarter mark of the century just past marked one of
these golden ages, a period of explosive creativity and
transforming insights. It has been said that ignorance of our
history is a kind of amnesia, concerning which it is wise to note
that amnesia is an illness. It would be a matter for regret, if we
lost contact with another of logic's golden ages, one that greatly
exceeds in reach that enjoyed by mathematical symbolic logic. This
is the period between the 11th and 16th centuries, loosely
conceived of as the Middle Ages. The logic of this period does not
have the expressive virtues afforded by the symbolic resources of
uninterpreted calculi, but mediaeval logic rivals in range,
originality and intellectual robustness a good deal of the modern
record. The range of logic in this period is striking, extending
from investigation of quantifiers and logic consequence to
inquiries into logical truth; from theories of reference to
accounts of identity; from work on the modalities to the stirrings
of the logic of relations, from theories of meaning to analyses of
the paradoxes, and more. While the scope of mediaeval logic is
impressive, of greater importance is that nearly all of it can be
read by the modern logician with at least some prospect of profit.
The last thing that mediaeval logic is, is a museum piece.
In decision theory there are basically two appr hes to the modeling of individual choice: one is based on an absolute representation of preferences leading to a ntDnerical expression of preference intensity. This is utility theory. Another approach is based on binary relations that encode pairwise preference. While the former has mainly blossomed in the Anglo-Saxon academic world, the latter is mostly advocated in continental Europe, including Russia. The advantage of the utility theory approach is that it integrates uncertainty about the state of nature, that may affect the consequences of decision. Then, the problems of choice and ranking from the knowledge of preferences become trivial once the utility function is known. In the case of the relational approach, the model does not explicitly accounts for uncertainty, hence it looks less sophisticated. On the other hand it is more descriptive than normative in the first stand because it takes the pairwise preference pattern expressed by the decision-maker as it is and tries to make the best out of it. Especially the preference relation is not supposed to have any property. The main problem with the utility theory approach is the gap between what decision-makers are and can express, and what the theory would like them to be and to be capable of expressing. With the relational approach this gap does not exist, but the main difficulty is now to build up convincing choice rules and ranking rules that may help the decision process.
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.
Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications focuses on discrete mathematics and combinatorial algorithms interacting with real world problems in computer science, operations research, applied mathematics and engineering. The book contains eleven chapters written by experts in their respective fields, and covers a wide spectrum of high-interest problems across these discipline domains. Among the contributing authors are Richard Karp of UC Berkeley and Robert Tarjan of Princeton; both are at the pinnacle of research scholarship in Graph Theory and Combinatorics. The chapters from the contributing authors focus on "real world" applications, all of which will be of considerable interest across the areas of Operations Research, Computer Science, Applied Mathematics, and Engineering. These problems include Internet congestion control, high-speed communication networks, multi-object auctions, resource allocation, software testing, data structures, etc. In sum, this is a book focused on major, contemporary problems, written by the top research scholars in the field, using cutting-edge mathematical and computational techniques.
The book is an authoritative and up-to-date introduction to the field of analysis and potential theory dealing with the distribution zeros of classical systems of polynomials such as orthogonal polynomials, Chebyshev, Fekete and Bieberbach polynomials, best or near-best approximating polynomials on compact sets and on the real line. The main feature of the book is the combination of potential theory with conformal invariants, such as module of a family of curves and harmonic measure, to derive discrepancy estimates for signed measures if bounds for their logarithmic potentials or energy integrals are known a priori.
Mathematical Problems from Applied Logic II presents chapters from selected, world renowned, logicians. Important topics of logic are discussed from the point of view of their further development in light of requirements arising from their successful application in areas such as Computer Science and AI language. Fields covered include: logic of provability, applications of computability theory to biology, psychology, physics, chemistry, economics, and other basic sciences; computability theory and computable models; logic and space-time geometry; hybrid systems; logic and region-based theory of space.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
This book, translated from the French, is an introduction to first-order model theory. The first six chapters are very basic: starting from scratch, they quickly reach the essential, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. The next chapter introduces logic via the study of the models of arithmetic, and the following is a combinatorial tool-box preparing for the chapters on saturated and prime models. The last ten chapters form a rather complete but nevertheless accessible exposition of stability theory, which is the core of the subject.
At first glance, Robinson's original form of nonstandard analysis appears nonconstructive in essence, because it makes a rather unrestricted use of classical logic and set theory and, in particular, of the axiom of choice. Recent developments, however, have given rise to the hope that the distance between constructive and nonstandard mathematics is actually much smaller than it appears. So the time was ripe for the first meeting dedicated simultaneously to both ways of doing mathematics and to the current and future reunion of these seeming opposites. Consisting of peer-reviewed research and survey articles written on the occasion of such an event, this volume offers views of the continuum from various standpoints. Including historical and philosophical issues, the topics of the contributions range from the foundations, the practice, and the applications of constructive and nonstandard mathematics, to the interplay of these areas and the development of a unified theory.
Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a 'secret weapon' by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler's internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.
This book presents eleven peer-reviewed papers from the 3rd International Conference on Applications of Mathematics and Informatics in Natural Sciences and Engineering (AMINSE2017) held in Tbilisi, Georgia in December 2017. Written by researchers from the region (Georgia, Russia, Turkey) and from Western countries (France, Germany, Italy, Luxemburg, Spain, USA), it discusses key aspects of mathematics and informatics, and their applications in natural sciences and engineering. Featuring theoretical, practical and numerical contributions, the book appeals to scientists from various disciplines interested in applications of mathematics and informatics in natural sciences and engineering.
Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.
The fundamental theorem of algebra states that any complex polynomial must have a complex root. This book examines three pairs of proofs of the theorem from three different areas of mathematics: abstract algebra, complex analysis and topology. The first proof in each pair is fairly straightforward and depends only on what could be considered elementary mathematics. However, each of these first proofs leads to more general results from which the fundamental theorem can be deduced as a direct consequence. These general results constitute the second proof in each pair. To arrive at each of the proofs, enough of the general theory of each relevant area is developed to understand the proof. In addition to the proofs and techniques themselves, many applications such as the insolvability of the quintic and the transcendence of e and pi are presented. Finally, a series of appendices give six additional proofs including a version of Gauss'original first proof. The book is intended for junior/senior level undergraduate mathematics students or first year graduate students, and would make an ideal "capstone" course in mathematics. |
You may like...
|