![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume comprises a collection of twenty written versions of invited as well as contributed papers presented at the conference held from 20-24 May 1996 in Beijing, China. It covers many areas of logic and the foundations of mathematics, as well as computer science. Also included is an article by M. Yasugi on the Asian Logic Conference which first appeared in Japanese, to provide a glimpse into the history and development of the series.
Feller Semigroups, Bernstein type Operators and Generalized Convexity Associated with Positive Projections.- Gregory's Rational Cubic Splines in Interpolation Subject to Derivative Obstacles.- Interpolation by Splines on Triangulations Oleg Davydov.- On the Use of Quasi-Newton Methods in DAE-Codes.- On the Regularity of Some Differential Operators.- Some Inequalities for Trigonometric Polynomials and their Derivatives.- Inf-Convolution and Radial Basis Functions.- On a Special Property of the Averaged Modulus for Functions of Bounded Variation.- A Simple Approach to the Variational Theory for Interpolation on Spheres.- Constants in Comonotone Polynomial Approximation - A Survey.- Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Pade Approximation).- Approximation Operators of Binomial Type.- Certain Results involving Gammaoperators.- Recent research at Cambridge on radial basis functions.- Representation of quasi-interpolants as differential operators and applications.- Native Hilbert Spaces for Radial Basis Functions I.- Adaptive Approximation with Walsh-similar Functions.- Dual Recurrence and Christoffel-Darboux-Type Formulas for Orthogonal Polynomials.- On Some Problems of Weighted Polynomial Approximation and Interpolation.- Asymptotics of derivatives of orthogonal polynomials based on generalized Jacobi weights. Some new theorems and applications.- List of participants.
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
The Bachelier Society for Mathematical Finance, founded in 1996, held its 1st World Congress in Paris on June 28 to July 1, 2000, thus coinciding in time with the centenary of the thesis defence of Louis Bachelier. In his thesis Bachelier introduced Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options, and this is widely considered the keystone for the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included 2 Nobel laureates, Paul Samuelson and Robert Merton. Over 130 further selected talks were given in 3 parallel sessions, all well attended by the over 500 participants who registered from all continents.
This monograph presents a comprehensive introduction to timed automata (TA) and time Petri nets (TPNs) which belong to the most widely used models of real-time systems. Some of the existing methods of translating time Petri nets to timed automata are presented, with a focus on the translations that correspond to the semantics of time Petri nets, associating clocks with various components of the nets.
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
'Numbers and Proofs' presents a gentle introduction to the notion
of proof to give the reader an understanding of how to decipher
others' proofs as well as construct their own. Useful methods of
proof are illustrated in the context of studying problems
concerning mainly numbers (real, rational, complex and integers).
An indispensable guide to all students of mathematics. Each proof
is preceded by a discussion which is intended to show the reader
the kind of thoughts they might have before any attempt proof is
made. Established proofs which the student is in a better position
to follow then follow.
Synthesis of Finite State Machines: Logic Optimization is the second in a set of two monographs devoted to the synthesis of Finite State Machines (FSMs). The first volume, Synthesis of Finite State Machines: Functional Optimization, addresses functional optimization, whereas this one addresses logic optimization. The result of functional optimization is a symbolic description of an FSM which represents a sequential function chosen from a collection of permissible candidates. Logic optimization is the body of techniques for converting a symbolic description of an FSM into a hardware implementation. The mapping of a given symbolic representation into a two-valued logic implementation is called state encoding (or state assignment) and it impacts heavily area, speed, testability and power consumption of the realized circuit. The first part of the book introduces the relevant background, presents results previously scattered in the literature on the computational complexity of encoding problems, and surveys in depth old and new approaches to encoding in logic synthesis. The second part of the book presents two main results about symbolic minimization; a new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame to check encodability of encoding constraints and find codes of minimum length that satisfy them. The third part of the book introduces generalized prime implicants (GPIs), which are the counterpart, in symbolic minimization of two-level logic, to prime implicants in two-valued two-level minimization. GPIs enable the design of an exact procedure for two-level symbolic minimization, based on a covering step which is complicated by the need to guarantee encodability of the final cover. A new efficient algorithm to verify encodability of a selected cover is presented. If a cover is not encodable, it is shown how to augment it minimally until an encodable superset of GPIs is determined. To handle encodability the authors have extended the frame to satisfy encoding constraints presented in the second part. The covering problems generated in the minimization of GPIs tend to be very large. Recently large covering problems have been attacked successfully by representing the covering table with binary decision diagrams (BDD). In the fourth part of the book the authors introduce such techniques and extend them to the case of the implicit minimization of GPIs, where the encodability and augmentation steps are also performed implicitly. Synthesis of Finite State Machines: Logic Optimization will be of interest to researchers and professional engineers who work in the area of computer-aided design of integrated circuits.
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact orcomplete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton&endash;Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.
Fuzzy logic is a recent revolutionary technology' which has brought together researchers from mathematics, engineering, computer science, cognitive and behavioral sciences, etc. The work in fuzzy technology at the Laboratory for International Fuzzy Engineering (LIFE) has been specifically applied to engineering problems. This book reflects the results of the work that has been undertaken at LIFE with chapters treating the following topical areas: Decision Support Systems, Intelligent Plant Operations Support, Fuzzy Modeling and Process Control, System Design, Image Understanding, Behavior Decisions for Mobile Robots, the Fuzzy Computer, and Fuzzy Neuro Systems. The book is a thorough analysis of research which has been implemented in the areas of fuzzy engineering technology. The analysis can be used to improve these specific applications or, perhaps more importantly, to investigate more sophisticated fuzzy control applications.
Since their inception, fuzzy sets and fuzzy logic became popular. The reason is that the very idea of fuzzy sets and fuzzy logic attacks an old tradition in science, namely bivalent (black-or-white, all-or-none) judg ment and reasoning and the thus resulting approach to formation of scientific theories and models of reality. The idea of fuzzy logic, briefly speaking, is just the opposite of this tradition: instead of full truth and falsity, our judgment and reasoning also involve intermediate truth values. Application of this idea to various fields has become known under the term fuzzy approach (or graded truth approach). Both prac tice (many successful engineering applications) and theory (interesting nontrivial contributions and broad interest of mathematicians, logicians, and engineers) have proven the usefulness of fuzzy approach. One of the most successful areas of fuzzy methods is the application of fuzzy relational modeling. Fuzzy relations represent formal means for modeling of rather nontrivial phenomena (reasoning, decision, control, knowledge extraction, systems analysis and design, etc. ) in the pres ence of a particular kind of indeterminacy called vagueness. Models and methods based on fuzzy relations are often described by logical formulas (or by natural language statements that can be translated into logical formulas). Therefore, in order to approach these models and methods in an appropriate formal way, it is desirable to have a general theory of fuzzy relational systems with basic connections to (formal) language which enables us to describe relationships in these systems."
This book collects, for the first time in one volume, contributions honoring Professor Raymond Smullyan's work on self-reference. It serves not only as a tribute to one of the great thinkers in logic, but also as a celebration of self-reference in general, to be enjoyed by all lovers of this field. Raymond Smullyan, mathematician, philosopher, musician and inventor of logic puzzles, made a lasting impact on the study of mathematical logic; accordingly, this book spans the many personalities through which Professor Smullyan operated, offering extensions and re-evaluations of his academic work on self-reference, applying self-referential logic to art and nature, and lastly, offering new puzzles designed to communicate otherwise esoteric concepts in mathematical logic, in the manner for which Professor Smullyan was so well known. This book is suitable for students, scholars and logicians who are interested in learning more about Raymond Smullyan's work and life.
Lattice-valued Logic aims at establishing the logical foundation for uncertain information processing routinely performed by humans and artificial intelligence systems. In this textbook for the first time a general introduction on lattice-valued logic is given. It systematically summarizes research from the basic notions up to recent results on lattice implication algebras, lattice-valued logic systems based on lattice implication algebras, as well as the corresponding reasoning theories and methods. The book provides the suitable theoretical logical background of lattice-valued logic systems and supports newly designed intelligent uncertain-information-processing systems and a wide spectrum of intelligent learning tasks.
This volume contains English translations of Frege's early writings in logic and philosophy and of relevant reviews by other leading logicians. Professor Bynum has contributed a biographical essay, introduction, and extensive bibliography.
This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an introductory paper that surveys Prawitz's numerous contributions to proof theory and proof-theoretic semantics and puts his work into a somewhat broader perspective, both historically and systematically. Chapters include either in-depth studies of certain aspects of Dag Prawitz's work or address open research problems that are concerned with core issues in structural proof theory and range from philosophical essays to papers of a mathematical nature. Investigations into the necessity of thought and the theory of grounds and computational justifications as well as an examination of Prawitz's conception of the validity of inferences in the light of three "dogmas of proof-theoretic semantics" are included. More formal papers deal with the constructive behaviour of fragments of classical logic and fragments of the modal logic S4 among other topics. In addition, there are chapters about inversion principles, normalization of p roofs, and the notion of proof-theoretic harmony and other areas of a more mathematical persuasion. Dag Prawitz also writes a chapter in which he explains his current views on the epistemic dimension of proofs and addresses the question why some inferences succeed in conferring evidence on their conclusions when applied to premises for which one already possesses evidence.
Modern mathematical logic would not exist without the analytical tools first developed by George Boole in The Mathematical Analysis of Logic and The Laws of Thought. The influence of the Boolean school on the development of logic, always recognised but long underestimated, has recently become a major research topic. This collection is the first anthology of works on Boole. It contains two works published in 1865, the year of Boole's death, but never reprinted, as well as several classic studies of recent decades and ten original contributions appearing here for the first time. From the programme of the English Algebraic School to Boole's use of operator methods, from the problem of interpretability to that of psychologism, a full range of issues is covered. The Boole Anthology is indispensable to Boole studies and will remain so for years to come.
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems. Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples. A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Goguen categories extend the relational calculus and its categorical formalization to the fuzzy world. Starting from the fundamental concepts of sets, binary relations and lattices this book introduces several categorical formulations of an abstract theory of relations such as allegories, Dedekind categories and related structures. It is shown that neither theory is sufficiently rich to describe basic operations on fuzzy relations. The book then introduces Goguen categories and provides a comprehensive study of these structures including their representation theory, and the definability of norm-based operations. The power of the theory is demonstrated by a comprehensive example. A certain Goguen category is used to specify and to develop a fuzzy controller. Based on its abstract description as well as certain desirable properties and their formal proofs, a verified controller is derived without compromising the - sometimes - intuitive choice of norm-based operations by fuzzy engineers.
This book provides an account of those parts of contemporary set theory that are relevant to other areas of pure mathematics. Intended for advanced undergraduates and beginning graduate students, the text is written in an easy-going style, with a minimum of formalism. The book begins with a review of "naive" set theory; it then develops the Zermelo-Fraenkel axioms of the theory, showing how they arise naturally from a rigorous answer to the question, "what is a set?" After discussing the ordinal and cardinal numbers, the book then delves into contemporary set theory, covering such topics as: the Borel hierarchy, stationary sets and regressive functions, and Lebesgue measure. Two chapters present an extension of the Zermelo-Fraenkel theory, discussing the axiom of constructibility and the question of provability in set theory. A final chapter presents an account of an alternative conception of set theory that has proved useful in computer science, the non-well-founded set theory of Peter Aczel. The author is a well-known mathematician and the editor of the "Computers in Mathematics" column in the AMS Notices and of FOCUS, the magazine published by the MAA.
Blending Approximations with Sine Functions.- Quasi-interpolation in the Absence of Polynomial Reproduction.- Estimating the Condition Number for Multivariate Interpolation Problems.- Wavelets on a Bounded Interval.- Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations.- Rate of Approximation of Weighted Derivatives by Linear Combinations of SMD Operators.- Approximation by Multivariate Splines: an Application of Boolean Methods.- Lm, ?, s-Splines in ?d.- Constructive Multivariate Approximation via Sigmoidal Functions with Applications to Neural Networks.- Spline-Wavelets of Minimal Support.- Necessary Conditions for Local Best Chebyshev Approximations by Splines with Free Knots.- C1 Interpolation on Higher-Dimensional Analogs of the 4-Direction Mesh.- Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.- The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function.- A Multi-Parameter Method for Nonlinear Least-Squares Approximation.- Analog VLSI Networks.- Converse Theorems for Approximation on Discrete Sets II.- A Dual Method for Smoothing Histograms using Nonnegative C1-Splines.- Segment Approximation By Using Linear Functionals.- Construction of Monotone Extensions to Boundary Function
New discoveries about algorithms are leading scientists beyond the
Church-Turing Thesis, which governs the "algorithmic universe" and
asserts the conventionality of recursive algorithms. A new paradigm
for computation, the super-recursive algorithm, offers promising
prospects for algorithms of much greater computing power and
efficiency. * Describes the strengthening link between the theory of super-recursive algorithms and actual algorithms close to practical realization * Examines the theory's basis as a foundation for advancements in computing, information science, and related technologies * Encompasses and systematizes all main types of mathematical models of algorithms * Highlights how super-recursive algorithms pave the way for more advanced design, utilization, and maintenance of computers * Examines and restructures the existing variety of mathematical models of complexity of algorithms and computation, introducing new models * Possesses a comprehensive bibliography and index
Mathematics and logic have been central topics of concern since the
dawn of philosophy. Since logic is the study of correct reasoning,
it is a fundamental branch of epistemology and a priority in any
philosophical system. Philosophers have focused on mathematics as a
case study for general philosophical issues and for its role in
overall knowledge- gathering. Today, philosophy of mathematics and
logic remain central disciplines in contemporary philosophy, as
evidenced by the regular appearance of articles on these topics in
the best mainstream philosophical journals; in fact, the last
decade has seen an explosion of scholarly work in these areas.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
This book is for researchers in computer science, mathematical logic, and philosophical logic. It shows the state of the art in current investigations of process calculi with mainly two major paradigms at work: linear logic and modal logic. The combination of approaches and pointers for further integration also suggests a grander vision for the field. |
You may like...
Judgments Over Time - The Interplay of…
Lawrence J. Sanna, Edward C. Chang
Hardcover
R2,012
Discovery Miles 20 120
Smart Urban Computing Applications
M.A. Jabbar, Sanju Tiwari, …
Hardcover
R3,090
Discovery Miles 30 900
Integrating Deep Learning Algorithms to…
R. Sujatha, S. L. Aarthy, …
Hardcover
R3,578
Discovery Miles 35 780
Designing Embedded Internet Devices
Brian DeMuth, Dan Eisenreich
Paperback
R1,530
Discovery Miles 15 300
|