![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.
This book is an attempt to give a systematic presentation of both
logic and type theory from a categorical perspective, using the
unifying concept of fibred category. Its intended audience consists
of logicians, type theorists, category theorists and (theoretical)
computer scientists.
In real management situations, uncertainty is inherently present in decision making. As such, it is increasingly imperative to research and develop new theories and methods of fuzzy sets. Theoretical and Practical Advancements for Fuzzy System Integration is a pivotal reference source for the latest scholarly research on the importance of expressing and measuring fuzziness in order to develop effective and practical decision making models and methods. Featuring coverage on an expansive range of perspectives and topics, such as fuzzy logic control, intuitionistic fuzzy set theory, and defuzzification, this book is ideally designed for academics, professionals, and researchers seeking current research on theoretical frameworks and real-world applications in the area of fuzzy sets and systems.
This book provides simple introduction to quantitative finance for students and junior quants who want to approach the typical industry problems with practical but rigorous ambition. It shows a simple link between theoretical technicalities and practical solutions. Mathematical aspects are discussed from a practitioner perspective, with a deep focus on practical implications, favoring the intuition and the imagination. In addition, the new post-crisis paradigms, like multi-curves, x-value adjustments (xVA) and Counterparty Credit Risk are also discussed in a very simple framework. Finally, real world data and numerical simulations are compared in order to provide a reader with a simple and handy insight on the actual model performances.
0 Basic Facts.- 1 Hey's Theorem and Consequences.- 2 Siegel-Weyl Reduction Theory.- 3 The Tamagawa Number and the Volume of G(?)/G(?).- 3.1 Statement of the main result.- 3.2 Proof of 3.1.- 3.3 The volume of G(?)/G(?).- 4 The Size of ?.- 4.1 Statement of results.- 4.2 Proofs.- 5 Margulis' Finiteness Theorem.- 5.1 The Result.- 5.2 Amenable groups.- 5.3 Kazhdan's property (T).- 5.4 Proof of 5.1; beginning.- 5.5 Interlude: parabolics and their opposites.- 5.6 Continuation of the proof.- 5.7 Contracting automorphisms and the Moore Ergodicity theorem.- 5.8 End of proof.- 5.9 Appendix on measure theory.- 6 A Zariski Dense and a Free Subgroup of ?.- 7 An Example.- 8 Problems.- 8.1 Generators.- 8.2 The congruence problem.- 8.3 Betti numbers.- References.
Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.
This self-contained book is an exposition of the fundamental ideas of model theory. It presents the necessary background from logic, set theory and other topics of mathematics. Only some degree of mathematical maturity and willingness to assimilate ideas from diverse areas are required. The book can be used for both teaching and self-study, ideally over two semesters. It is primarily aimed at graduate students in mathematical logic who want to specialise in model theory. However, the first two chapters constitute the first introduction to the subject and can be covered in one-semester course to senior undergraduate students in mathematical logic. The book is also suitable for researchers who wish to use model theory in their work.
This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a 'non-atomic structure' with an 'atomic, finitely supported structure'. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents. In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of 'cardinality' by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzy subsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of 'infinity' (Dedekind infinity, Mostowski infinity, Kuratowski infinity, Tarski infinity, ascending infinity) are introduced, compared and studied in the new framework. Relevant examples of sets that satisfy some forms of infinity while not satisfying others are provided. Uniformly supported sets are analyzed, and certain surprising properties are presented. Finally, some variations of the finite support requirement are discussed. The book will be of value to researchers in the foundations of set theory, algebra and logic.
This book offers insight into the nature of meaningful discourse. It presents an argument of great intellectual scope written by an author with more than four decades of experience. Readers will gain a deeper understanding into three theories of the logos: analytic, dialectical, and oceanic. The author first introduces and contrasts these three theories. He then assesses them with respect to their basic parameters: necessity, truth, negation, infinity, as well as their use in mathematics. Analytic Aristotelian logic has traditionally claimed uniqueness, most recently in its Fregean and post-Fregean variants. Dialectical logic was first proposed by Hegel. The account presented here cuts through the dense, often incomprehensible Hegelian text. Oceanic logic was never identified as such, but the author gives numerous examples of its use from the history of philosophy. The final chapter addresses the plurality of the three theories and of how we should deal with it. The author first worked in analytic logic in the 1970s and 1980s, first researched dialectical logic in the 1990s, and discovered oceanic logic in the 2000s. This book represents the culmination of reflections that have lasted an entire scholarly career.
While it is well known that the Delian problems are impossible to solve with a straightedge and compass - for example, it is impossible to construct a segment whose length is cube root of 2 with these instruments - the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 that one can in fact construct a segment of length cube root of 2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few questions immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study on the history of folding in mathematics, spanning from the 16th century to the 20th century, and offers a general study on the ways mathematical knowledge is marginalised, disappears, is ignored or becomes obsolete. In doing so, it makes a valuable contribution to the field of history and philosophy of science, particularly the history and philosophy of mathematics and is highly recommended for anyone interested in these topics.
Now in a new edition --the classic presentation of the theory of computable functions in the context of the foundations of mathematics. Part I motivates the study of computability with discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number. Part II starts with readings from Turing and Post leading to the formal theory of recursive functions. Part III presents sufficient formal logic to give a full development of G del's incompleteness theorems. Part IV considers the significance of the technical work with a discussion of Church's Thesis and readings on the foundations of mathematics. This new edition contains the timeline "Computability and Undecidability" as well as the essay "On mathematics."
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth. The chapters are arranged so that the two introductory articles
come first; these are then followed by articles from core classical
areas of proof theory; the handbook concludes with articles that
deal with topics closely related to computer science.
This book introduces new models based on R-calculus and theories of belief revision for dealing with large and changing data. It extends R-calculus from first-order logic to propositional logic, description logics, modal logic and logic programming, and from minimal change semantics to subset minimal change, pseudo-subformula minimal change and deduction-based minimal change (the last two minimal changes are newly defined). And it proves soundness and completeness theorems with respect to the minimal changes in these logics. To make R-calculus computable, an approximate R-calculus is given which uses finite injury priority method in recursion theory. Moreover, two applications of R-calculus are given to default theory and semantic inheritance networks. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna's logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
This book is a tribute to Professor Ewa Orlowska, a Polish logician who was celebrating the 60th year of her scientific career in 2017. It offers a collection of contributed papers by different authors and covers the most important areas of her research. Prof. Orlowska made significant contributions to many fields of logic, such as proof theory, algebraic methods in logic and knowledge representation, and her work has been published in 3 monographs and over 100 articles in internationally acclaimed journals and conference proceedings. The book also includes Prof. Orlowska's autobiography, bibliography and a trialogue between her and the editors of the volume, as well as contributors' biographical notes, and is suitable for scholars and students of logic who are interested in understanding more about Prof. Orlowska's work.
* The ELS model of enterprise security is endorsed by the Secretary of the Air Force for Air Force computing systems and is a candidate for DoD systems under the Joint Information Environment Program. * The book is intended for enterprise IT architecture developers, application developers, and IT security professionals. * This is a unique approach to end-to-end security and fills a niche in the market.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest's research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism-the thesis that there exist true but inconsistent sentences-and paraconsistency-an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest's work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest's work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest's work and attest to its continued relevance and topicality. The book also includes Priest's responses to the contributors, providing a further layer to the development of these themes .
Mathematical logic is essentially related to computer science. This book describes the aspects of mathematical logic that are closely related to each other, including classical logic, constructive logic, and modal logic. This book is intended to attend to both the peculiarities of logical systems and the requirements of computer science.In this edition, the revisions essentially involve rewriting the proofs, increasing the explanations, and adopting new terms and notations.
In this revolutionary work, the author sets the stage for the
science of In the field of
Ordinal Computability discusses models of computation obtained by generalizing classical models, such as Turing machines or register machines, to transfinite working time and space. In particular, recognizability, randomness, and applications to other areas of mathematics are covered.
This work is devoted to a study of various relations between non-classical logics and fuzzy sets. This volume is aimed at all those who are interested in a deeper understanding of the mathematical foundations of fuzzy set theory, particularly in intuitionistic logic, Lukasiewicz logic, monoidal logic, fuzzy logic and topos-like categories. The tutorial nature of the longer chapters, the comprehensive bibliography and index should make it suitable as a valuable and important reference for graduate students as well as research workers in the field of non-classical logics. The book is arranged in three parts: part A presents the most recent developments in the theory of Heyting algebras, MV-algebras, quantales and GL-monoids; part B gives a coherent and current account of topos-like categories for fuzzy set theory based on Heyting algebra valued sets, quantal sets of M-valued sets; part C addresses general aspects of non-classical logics including epistemological problems as well as recursive properties of fuzzy logic. |
![]() ![]() You may like...
Number Treasury 3: Investigations, Facts…
Margaret J Kenney, Stanley J. Bezuszka
Hardcover
R1,998
Discovery Miles 19 980
|