![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This book is a specialized monograph on interpolation and definability, a notion central in pure logic and with significant meaning and applicability in all areas where logic is applied, especially computer science, artificial intelligence, logic programming, philosophy of science and natural language. Suitable for researchers and graduate students in mathematics, computer science and philosophy, this is the latest in the prestigous world-renowned Oxford Logic Guides, which contains Michael Dummet's Elements of intuitionism (second edition), J. M. Dunn and G. Hardegree's Algebraic Methods in Philosophical Logic, H. Rott's Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning, P. T. Johnstone's Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2, and David J. Pym and Eike Ritter's Reductive Logic and Proof Search: Proof theory, semantics and control.
The aim of this volume is to collect original contributions by the best specialists from the area of proof theory, constructivity, and computation and discuss recent trends and results in these areas. Some emphasis will be put on ordinal analysis, reductive proof theory, explicit mathematics and type-theoretic formalisms, and abstract computations. The volume is dedicated to the 60th birthday of Professor Gerhard Jager, who has been instrumental in shaping and promoting logic in Switzerland for the last 25 years. It comprises contributions from the symposium "Advances in Proof Theory", which was held in Bern in December 2013. Proof theory came into being in the twenties of the last century, when it was inaugurated by David Hilbert in order to secure the foundations of mathematics. It was substantially influenced by Goedel's famous incompleteness theorems of 1930 and Gentzen's new consistency proof for the axiom system of first order number theory in 1936. Today, proof theory is a well-established branch of mathematical and philosophical logic and one of the pillars of the foundations of mathematics. Proof theory explores constructive and computational aspects of mathematical reasoning; it is particularly suitable for dealing with various questions in computer science.
This book presents the state of the art in the fields of formal logic pioneered by Graham Priest. It includes advanced technical work on the model and proof theories of paraconsistent logic, in contributions from top scholars in the field. Graham Priest's research has had a considerable influence on the field of philosophical logic, especially with respect to the themes of dialetheism-the thesis that there exist true but inconsistent sentences-and paraconsistency-an account of deduction in which contradictory premises do not entail the truth of arbitrary sentences. Priest's work has regularly challenged researchers to reappraise many assumptions about rationality, ontology, and truth. This book collects original research by some of the most esteemed scholars working in philosophical logic, whose contributions explore and appraise Priest's work on logical approaches to problems in philosophy, linguistics, computation, and mathematics. They provide fresh analyses, critiques, and applications of Priest's work and attest to its continued relevance and topicality. The book also includes Priest's responses to the contributors, providing a further layer to the development of these themes .
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book presents an intuitive picture-oriented approach to the formative processes technique and to its applications. In the first part the authors introduce basic set-theoretic terminology and properties, the decision problem in set theory, and formative processes. The second part of the book is devoted to applications of the technique of formative processes to decision problems. All chapters contain exercises and the book is appropriate for researchers and graduate students in the area of computer science logic.
* The ELS model of enterprise security is endorsed by the Secretary of the Air Force for Air Force computing systems and is a candidate for DoD systems under the Joint Information Environment Program. * The book is intended for enterprise IT architecture developers, application developers, and IT security professionals. * This is a unique approach to end-to-end security and fills a niche in the market.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
The collected works of Turing, including a substantial amount of unpublished material, will comprise four volumes: Mechanical Intelligence, Pure Mathematics, Morphogenesis and Mathematical Logic. Alan Mathison Turing (1912-1954) was a brilliant man who made major contributions in several areas of science. Today his name is mentioned frequently in philosophical discussions about the nature of Artificial Intelligence. Actually, he was a pioneer researcher in computer architecture and software engineering; his work in pure mathematics and mathematical logic extended considerably further and his last work, on morphogenesis in plants, is also acknowledged as being of the greatest originality and of permanent importance. He was one of the leading figures in Twentieth-century science, a fact which would have been known to the general public sooner but for the British Official Secrets Act, which prevented discussion of his wartime work. What is maybe surprising about these papers is that although they were written decades ago, they address major issues which concern researchers today.
This book explores an important central thread that unifies Russell's thoughts on logic in two works previously considered at odds with each other, the Principles of Mathematics and the later Principia Mathematica. This thread is Russell's doctrine that logic is an absolutely general science and that any calculus for it must embrace wholly unrestricted variables. The heart of Landini's book is a careful analysis of Russell's largely unpublished "substitutional" theory. On Landini's showing, the substitutional theory reveals the unity of Russell's philosophy of logic and offers new avenues for a genuine solution of the paradoxes plaguing Logicism.
A comprehensive philosophical introduction to set theory. Anyone wishing to work on the logical foundations of mathematics must understand set theory, which lies at its heart. Potter offers a thorough account of cardinal and ordinal arithmetic, and the various axiom candidates. He discusses in detail the project of set-theoretic reduction, which aims to interpret the rest of mathematics in terms of set theory. The key question here is how to deal with the paradoxes that bedevil set theory. Potter offers a strikingly simple version of the most widely accepted response to the paradoxes, which classifies sets by means of a hierarchy of levels. What makes the book unique is that it interweaves a careful presentation of the technical material with a penetrating philosophical critique. Potter does not merely expound the theory dogmatically but at every stage discusses in detail the reasons that can be offered for believing it to be true.
This book offers a multifaceted perspective on fuzzy set theory, discussing its developments over the last 50 years. It reports on all types of fuzzy sets, from ordinary to hesitant fuzzy sets, with each one explained by its own developers, authoritative scientists well known for their previous works. Highlighting recent theorems and proofs, the book also explores how fuzzy set theory has come to be extensively used in almost all branches of science, including the health sciences, decision science, earth science and the social sciences alike. It presents a wealth of real-world sample applications, from routing problem to robotics, and from agriculture to engineering. By offering a comprehensive, timely and detailed portrait of the field, the book represents an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on new fuzzy set extensions.
Alfred Tarski was one of the two giants of the twentieth-century development of logic, along with Kurt Goedel. The four volumes of this collection contain all of Tarski's papers and abstracts published during his lifetime, as well as a comprehensive bibliography. Here will be found many of the works, spanning the period 1921 through 1979, which are the bedrock of contemporary areas of logic, whether in mathematics or philosophy. These areas include the theory of truth in formalized languages, decision methods and undecidable theories, foundations of geometry, set theory, and model theory, algebraic logic, and universal algebra.
General concepts and methods that occur throughout mathematics and
now also in theoretical computer science are the subject of this
book. It is a thorough introduction to Categories, emphasizing the
geometric nature of the subject and explaining its connections to
mathematical logic. The book should appeal to the inquisitive
reader who has seen some basic topology and algebra and would like
to learn and explore further.
This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
Modern applications of logic, in mathematics, theoretical computer science, and linguistics, require combined systems involving many different logics working together. In this book the author offers a basic methodology for combining - or fibring - systems. This means that many existing complex systems can be broken down into simpler components, hence making them much easier to manipulate.
This edited book presents the state-of-the-art of applying fuzzy logic to managerial decision-making processes in areas such as fuzzy-based portfolio management, recommender systems, performance assessment and risk analysis, among others. Presenting the latest research, with a strong focus on applications and case studies, it is a valuable resource for researchers, practitioners, project leaders and managers wanting to apply or improve their fuzzy-based skills.
Ordinal Computability discusses models of computation obtained by generalizing classical models, such as Turing machines or register machines, to transfinite working time and space. In particular, recognizability, randomness, and applications to other areas of mathematics are covered.
The book attempts an elementary exposition of the topics connected with many-valued logics. It gives an account of the constructions being "many-valued" at their origin, i.e. those obtained through intended introduction of logical values next to truth and falsity. To this aim, the matrix method has been chosen as a prevailing manner of presenting the subject. The inquiry throws light upon the profound problem of the criteria of many-valuedness and its classical characterizations. Besides, the reader can find information concerning the main systems of many-valued logic, related axiomatic constructions, and conceptions inspired by many valuedness. The examples of various applications to philosophical logic and some practical domains, as switching theory or Computer Science, helps to see many-valuedness in a wider perspective. Together with a selective bibliography and historical references it makes the work especially useful as a survey and guide in this field of logic.
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
This text and software package introduces readers to automated theorem proving, while providing two approaches implemented as easy-to-use programs. These are semantic-tree theorem proving and resolution-refutation theorem proving. The early chapters introduce first-order predicate calculus, well-formed formulae, and their transformation to clauses. Then the author goes on to show how the two methods work and provides numerous examples for readers to try their hand at theorem-proving experiments. Each chapter comes with exercises designed to familiarise the readers with the ideas and with the software, and answers to many of the problems.
In this book the authors present an alternative set theory dealing with a more relaxed notion of infiniteness, called finitely supported mathematics (FSM). It has strong connections to the Fraenkel-Mostowski (FM) permutative model of Zermelo-Fraenkel (ZF) set theory with atoms and to the theory of (generalized) nominal sets. More exactly, FSM is ZF mathematics rephrased in terms of finitely supported structures, where the set of atoms is infinite (not necessarily countable as for nominal sets). In FSM, 'sets' are replaced either by `invariant sets' (sets endowed with some group actions satisfying a finite support requirement) or by `finitely supported sets' (finitely supported elements in the powerset of an invariant set). It is a theory of `invariant algebraic structures' in which infinite algebraic structures are characterized by using their finite supports. After explaining the motivation for using invariant sets in the experimental sciences as well as the connections with the nominal approach, admissible sets and Gandy machines (Chapter 1), the authors present in Chapter 2 the basics of invariant sets and show that the principles of constructing FSM have historical roots both in the definition of Tarski `logical notions' and in the Erlangen Program of Klein for the classification of various geometries according to invariants under suitable groups of transformations. Furthermore, the consistency of various choice principles is analyzed in FSM. Chapter 3 examines whether it is possible to obtain valid results by replacing the notion of infinite sets with the notion of invariant sets in the classical ZF results. The authors present techniques for reformulating ZF properties of algebraic structures in FSM. In Chapter 4 they generalize FM set theory by providing a new set of axioms inspired by the theory of amorphous sets, and so defining the extended Fraenkel-Mostowski (EFM) set theory. In Chapter 5 they define FSM semantics for certain process calculi (e.g., fusion calculus), and emphasize the links to the nominal techniques used in computer science. They demonstrate a complete equivalence between the new FSM semantics (defined by using binding operators instead of side conditions for presenting the transition rules) and the known semantics of these process calculi. The book is useful for researchers and graduate students in computer science and mathematics, particularly those engaged with logic and set theory. |
You may like...
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R981
Discovery Miles 9 810
|