![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
The Handbook of Deontic Logic and Normative Systems presents a detailed overview of the main lines of research on contemporary deontic logic and related topics. Although building on decades of previous work in the field, it is the first collection to take into account the significant changes in the landscape of deontic logic that have occurred in the past twenty years. These changes have resulted largely, though not entirely, from the interaction of deontic logic with a variety of other fields, including computer science, legal theory, organizational theory, economics, and linguistics. This first volume of the Handbook is divided into three parts, containing nine chapters in all, each written by leading experts in the field. The first part concentrates on historical foundations. The second examines topics of central interest in contemporary deontic logic. The third presents some new logical frameworks that have now become part of the mainstream literature. A second volume of the Handbook is currently in preparation, and there may be a third after that.
Fuzzy logic is a relatively new concept in science applications. Hitherto, fuzzy logic has been a conceptual process applied in the field of risk management. Its potential applicability is much wider than that, however, and its particular suitability for expanding our understanding of processes and information in science and engineering in our post-modern world is only just beginning to be appreciated. Written as a companion text to the author 's earlier volume "An Introduction to Fuzzy Logic Applications," the book is aimed at professional engineers and students and those with an interest in exploring the potential of fuzzy logic as an information processing kit with a wide variety of practical applications in the field of engineering science and develops themes and topics introduced in the author 's earlier text.
Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? The third edition improves the second edition in two ways: First it removes many typos and mathematical inaccuracies that occur in the second edition (in particular in the references). Secondly, the third edition reports on five open problems (out of thirtyfour open problems of the second edition) that have been partially or fully solved since that edition appeared in 2005.
Mathematical Principles of Fuzzy Logic provides a systematic study of the formal theory of fuzzy logic. The book is based on logical formalism demonstrating that fuzzy logic is a well-developed logical theory. It includes the theory of functional systems in fuzzy logic, providing an explanation of what can be represented, and how, by formulas of fuzzy logic calculi. It also presents a more general interpretation of fuzzy logic within the environment of other proper categories of fuzzy sets stemming either from the topos theory, or even generalizing the latter. This book presents fuzzy logic as the mathematical theory of vagueness as well as the theory of commonsense human reasoning, based on the use of natural language, the distinguishing feature of which is the vagueness of its semantics.
This volume honours the life and work of Solomon Feferman, one of the most prominent mathematical logicians of the latter half of the 20th century. In the collection of essays presented here, researchers examine Feferman's work on mathematical as well as specific methodological and philosophical issues that tie into mathematics. Feferman's work was largely based in mathematical logic (namely model theory, set theory, proof theory and computability theory), but also branched out into methodological and philosophical issues, making it well known beyond the borders of the mathematics community. With regard to methodological issues, Feferman supported concrete projects. On the one hand, these projects calibrate the proof theoretic strength of subsystems of analysis and set theory and provide ways of overcoming the limitations imposed by Goedel's incompleteness theorems through appropriate conceptual expansions. On the other, they seek to identify novel axiomatic foundations for mathematical practice, truth theories, and category theory. In his philosophical research, Feferman explored questions such as "What is logic?" and proposed particular positions regarding the foundations of mathematics including, for example, his "conceptual structuralism." The contributing authors of the volume examine all of the above issues. Their papers are accompanied by an autobiography presented by Feferman that reflects on the evolution and intellectual contexts of his work. The contributing authors critically examine Feferman's work and, in part, actively expand on his concrete mathematical projects. The volume illuminates Feferman's distinctive work and, in the process, provides an enlightening perspective on the foundations of mathematics and logic.
Over the last few decades the interest of logicians and mathematicians in constructive and computational aspects of their subjects has been steadily growing, and researchers from disparate areas realized that they can benefit enormously from the mutual exchange of techniques concerned with those aspects. A key figure in this exciting development is the logician and mathematician Helmut Schwichtenberg to whom this volume is dedicated on the occasion of his 70th birthday and his turning emeritus. The volume contains 20 articles from leading experts about recent developments in Constructive set theory, Provably recursive functions, Program extraction, Theories of truth, Constructive mathematics, Classical vs. intuitionistic logic, Inductive definitions, and Continuous functionals and domains.
Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms is an organized edited collection of contributed chapters covering basic principles, methodologies, and applications of fuzzy systems, neural networks and genetic algorithms. All chapters are original contributions by leading researchers written exclusively for this volume. This book reviews important concepts and models, and focuses on specific methodologies common to fuzzy systems, neural networks and evolutionary computation. The emphasis is on development of cooperative models of hybrid systems. Included are applications related to intelligent data analysis, process analysis, intelligent adaptive information systems, systems identification, nonlinear systems, power and water system design, and many others. Intelligent Hybrid Systems: Fuzzy Logic, Neural Networks, and Genetic Algorithms provides researchers and engineers with up-to-date coverage of new results, methodologies and applications for building intelligent systems capable of solving large-scale problems.
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text.This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research."
Alfred Tarski was one of the two giants of the twentieth-century development of logic, along with Kurt Goedel. The four volumes of this collection contain all of Tarski's published papers and abstracts, as well as a comprehensive bibliography. Here will be found many of the works, spanning the period 1921 through 1979, which are the bedrock of contemporary areas of logic, whether in mathematics or philosophy. These areas include the theory of truth in formalized languages, decision methods and undecidable theories, foundations of geometry, set theory, and model theory, algebraic logic, and universal algebra.
This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz's work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of
natural deduction with higher-order rules, as opposed to
higher-order connectives, and a paper discussing the application of
natural deduction rules to dealing with equality in predicate
calculus. The volume continues with a key chapter summarizing work
on the extension of the Curry-Howard isomorphism (itself a
by-product of the work on natural deduction), via methods of
category theory that have been successfully applied to linear
logic, as well as many other contributions from highly regarded
authorities. With an illustrious group of contributors addressing a
wealth of topics and applications, this volume is a valuable
addition to the libraries of academics in the multiple disciplines
whose development has been given added scope by the methodologies
supplied by natural deduction. The volume is representative of the
rich and varied directions that Prawitz work has inspired in the
area of natural deduction.
Supervision of Petri Nets presents supervisory control theory for Petri nets with a legal set as the control goal. Petri nets model discrete event systems - dynamic systems whose evolution is completely determined by the occurrence of discrete events. Control laws, which guarantee that the system meets a set of specifications in the presence of uncontrollable and unobservable events, are studied and constructed, using application areas such as automated manufacturing and transportation systems. Supervision of Petri Nets introduces a new and mathematically sound approach to the subject. Existing results are unified by proposing a general mathematical language that makes extensive use of order theoretical ideas, and numerous new results are described, including ready-to-use algorithms that construct supervisory control laws for Petri nets. Supervision of Petri Nets is an excellent reference for researchers, and may also be used as a supplementary text for advanced courses on control theory.
This Handbook treats those parts of the theory of Boolean algebras of most interest to pure mathematicians: the set-theoretical abstract theory and applications and relationships to measure theory, topology, and logic. It is divided into two parts (published in three volumes). Part I (volume 1) is a comprehensive, self-contained introduction to the set-theoretical aspects of the theory of Boolean Algebras. It includes, in addition to a systematic introduction of basic algebra and topological ideas, recent developments such as the Balcar-Franek and Shelah-Shapirovskii results on free subalgebras. Part II (volumes 2 and 3) contains articles on special topics describing - mostly with full proofs - the most recent results in special areas such as automorphism groups, Ketonen's theorem, recursive Boolean algebras, and measure algebras.
This book provides an overview of some of the most active topics in the theory of transformation groups over the past decades and stresses advances obtained in the last dozen years. The emphasis is on actions of Lie groups on manifolds and CW complexes. Manifolds and actions of Lie groups on them are studied in the linear, semialgebraic, definable, analytic, smooth, and topological categories. Equivalent vector bundles play an important role. The work is divided into fifteen articles and will be of interest to anyone researching or studying transformations groups. The references make it easy to find details and original accounts of the topics surveyed, including tools and theories used in these accounts.
"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preua * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina"
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
Primary Maths for Scotland Textbook 1C is the third of 3 first level textbooks. These engaging and pedagogically rigorous books are the first maths textbooks for Scotland completely aligned to the benchmarks and written specifically to support Scottish children in mastering mathematics at their own pace. Primary Maths for Scotland Textbook 1C is the third of 3 first level textbooks. The books are clear and simple with a focus on developing conceptual understanding alongside procedural fluency. They cover the entire first level mathematics Curriculum for Excellence in an easy-to-use set of textbooks which can fit in with teacher's existing planning, resources and scheme of work. - Packed with problem-solving, investigations and challenging problems - Diagnostic check lists at the start of each unit ensure that pupils possess the required pre-requisite knowledge to engage on the unit of work - Worked examples and non-examples help pupils fully understand mathematical concepts - Includes intelligent practice that reinforces pupils' procedural fluency
The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.
Feller Semigroups, Bernstein type Operators and Generalized Convexity Associated with Positive Projections.- Gregory's Rational Cubic Splines in Interpolation Subject to Derivative Obstacles.- Interpolation by Splines on Triangulations Oleg Davydov.- On the Use of Quasi-Newton Methods in DAE-Codes.- On the Regularity of Some Differential Operators.- Some Inequalities for Trigonometric Polynomials and their Derivatives.- Inf-Convolution and Radial Basis Functions.- On a Special Property of the Averaged Modulus for Functions of Bounded Variation.- A Simple Approach to the Variational Theory for Interpolation on Spheres.- Constants in Comonotone Polynomial Approximation - A Survey.- Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Pade Approximation).- Approximation Operators of Binomial Type.- Certain Results involving Gammaoperators.- Recent research at Cambridge on radial basis functions.- Representation of quasi-interpolants as differential operators and applications.- Native Hilbert Spaces for Radial Basis Functions I.- Adaptive Approximation with Walsh-similar Functions.- Dual Recurrence and Christoffel-Darboux-Type Formulas for Orthogonal Polynomials.- On Some Problems of Weighted Polynomial Approximation and Interpolation.- Asymptotics of derivatives of orthogonal polynomials based on generalized Jacobi weights. Some new theorems and applications.- List of participants.
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban. |
![]() ![]() You may like...
SIMD Programming Manual for Linux and…
Paul Cockshott, Kenneth Renfrew
Hardcover
R3,191
Discovery Miles 31 910
XML in Data Management - Understanding…
Peter Aiken, M. David Allen
Paperback
R1,218
Discovery Miles 12 180
|