Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preua * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina"
Mathematical logic is essentially related to computer science. This book describes the aspects of mathematical logic that are closely related to each other, including classical logic, constructive logic, and modal logic. This book is intended to attend to both the peculiarities of logical systems and the requirements of computer science.In this edition, the revisions essentially involve rewriting the proofs, increasing the explanations, and adopting new terms and notations.
The notion of complexity is an important contribution of logic to theoretical computer science and mathematics. This volume attempts to approach complexity in a holistic way, investigating mathematical properties of complexity hierarchies at the same time as discussing algorithms and computational properties. A main focus of the volume is on some of the new paradigms of computation, among them Quantum Computing and Infinitary Computation. The papers in the volume are tied together by an introductory article describing abstract properties of complexity hierarchies. This volume will be of great interest to both mathematical logicians and theoretical computer scientists, providing them with new insights into the various views of complexity and thus shedding new light on their own research.
This is the first comprehensive treatment of subjective logic and all its operations. The author developed the approach, and in this book he first explains subjective opinions, opinion representation, and decision-making under vagueness and uncertainty, and he then offers a full definition of subjective logic, harmonising the key notations and formalisms, concluding with chapters on trust networks and subjective Bayesian networks, which when combined form general subjective networks. The author shows how real-world situations can be realistically modelled with regard to how situations are perceived, with conclusions that more correctly reflect the ignorance and uncertainties that result from partially uncertain input arguments. The book will help researchers and practitioners to advance, improve and apply subjective logic to build powerful artificial reasoning models and tools for solving real-world problems. A good grounding in discrete mathematics is a prerequisite.
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin's problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah's astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
This volume comprises a collection of twenty written versions of invited as well as contributed papers presented at the conference held from 20-24 May 1996 in Beijing, China. It covers many areas of logic and the foundations of mathematics, as well as computer science. Also included is an article by M. Yasugi on the Asian Logic Conference which first appeared in Japanese, to provide a glimpse into the history and development of the series.
This volume contains revised papers that were presented at the international workshop entitled Computational Methods for Algebraic Spline Surfaces ("COMPASS"), which was held from September 29 to October 3, 2003, at Schloss Weinberg, Kefermarkt (A- tria). The workshop was mainly devoted to approximate algebraic geometry and its - plications. The organizers wanted to emphasize the novel idea of approximate implici- zation, that has strengthened the existing link between CAD / CAGD (Computer Aided Geometric Design) and classical algebraic geometry. The existing methods for exact implicitization (i. e., for conversion from the parametric to an implicit representation of a curve or surface) require exact arithmetic and are too slow and too expensive for industrial use. Thus the duality of an implicit representation and a parametric repres- tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders, cones and toroidal surfaces. On the other hand, this duality is a very useful tool for - veloping ef?cient algorithms. Approximate implicitization makes this duality available for general curves and surfaces. The traditional exact implicitization of parametric surfaces produce global rep- sentations, which are exact everywhere. The surface patches used in CAD, however, are always de?ned within a small box only; they are obtained for a bounded parameter domain (typically a rectangle, or - in the case of "trimmed" surface patches - a subset of a rectangle). Consequently, a globally exact representation is not really needed in practice."
Feller Semigroups, Bernstein type Operators and Generalized Convexity Associated with Positive Projections.- Gregory's Rational Cubic Splines in Interpolation Subject to Derivative Obstacles.- Interpolation by Splines on Triangulations Oleg Davydov.- On the Use of Quasi-Newton Methods in DAE-Codes.- On the Regularity of Some Differential Operators.- Some Inequalities for Trigonometric Polynomials and their Derivatives.- Inf-Convolution and Radial Basis Functions.- On a Special Property of the Averaged Modulus for Functions of Bounded Variation.- A Simple Approach to the Variational Theory for Interpolation on Spheres.- Constants in Comonotone Polynomial Approximation - A Survey.- Will Ramanujan kill Baker-Gammel-Wills? (A Selective Survey of Pade Approximation).- Approximation Operators of Binomial Type.- Certain Results involving Gammaoperators.- Recent research at Cambridge on radial basis functions.- Representation of quasi-interpolants as differential operators and applications.- Native Hilbert Spaces for Radial Basis Functions I.- Adaptive Approximation with Walsh-similar Functions.- Dual Recurrence and Christoffel-Darboux-Type Formulas for Orthogonal Polynomials.- On Some Problems of Weighted Polynomial Approximation and Interpolation.- Asymptotics of derivatives of orthogonal polynomials based on generalized Jacobi weights. Some new theorems and applications.- List of participants.
This monograph presents a comprehensive introduction to timed automata (TA) and time Petri nets (TPNs) which belong to the most widely used models of real-time systems. Some of the existing methods of translating time Petri nets to timed automata are presented, with a focus on the translations that correspond to the semantics of time Petri nets, associating clocks with various components of the nets.
This reference work deals with important topics in general topology and their role in functional analysis and axiomatic set theory, for graduate students and researchers working in topology, functional analysis, set theory and probability theory. It provides a guide to recent research findings, with three contributions by Arhangel'skii and Choban.
In this new text, Steven Givant-the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski-develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
The Bachelier Society for Mathematical Finance, founded in 1996, held its 1st World Congress in Paris on June 28 to July 1, 2000, thus coinciding in time with the centenary of the thesis defence of Louis Bachelier. In his thesis Bachelier introduced Brownian motion as a tool for the analysis of financial markets as well as the exact definition of options, and this is widely considered the keystone for the emergence of mathematical finance as a scientific discipline. The prestigious list of plenary speakers in Paris included 2 Nobel laureates, Paul Samuelson and Robert Merton. Over 130 further selected talks were given in 3 parallel sessions, all well attended by the over 500 participants who registered from all continents.
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.
This textbook provides a first introduction to mathematical logic which is closely attuned to the applications of logic in computer science. In it the authors emphasize the notion that deduction is a form of computation. Whilst all the traditional subjects of logic are covered thoroughly: syntax, semantics, completeness, and compactness; much of the book deals with less traditional topics such as resolution theorem proving, logic programming and non-classical logics - modal and intuitionistic - which are becoming increasingly important in computer science. No previous exposure to logic is assumed and so this will be suitable for upper level undergraduates or beginning graduate students in computer science or mathematics.From reviews of the first edition: "... must surely rank as one of the most fruitful textbooks introduced into computer science ... We strongly suggest it as a textbook ..." SIGACT News
Boolean algebras underlie many central constructions of analysis, logic, probability theory, and cybernetics. This book concentrates on the analytical aspects of their theory and application, which distinguishes it among other sources. Boolean Algebras in Analysis consists of two parts. The first concerns the general theory at the beginner's level. Presenting classical theorems, the book describes the topologies and uniform structures of Boolean algebras, the basics of complete Boolean algebras and their continuous homomorphisms, as well as lifting theory. The first part also includes an introductory chapter describing the elementary to the theory. The second part deals at a graduate level with the metric theory of Boolean algebras at a graduate level. The covered topics include measure algebras, their sub algebras, and groups of automorphisms. Ample room is allotted to the new classification theorems abstracting the celebrated counterparts by D.Maharam, A.H. Kolmogorov, and V.A.Rokhlin. Boolean Algebras in Analysis is an exceptional definitive source on Boolean algebra as applied to functional analysis and probability. It is intended for all who are interested in new and powerful tools for hard and soft mathematical analysis.
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact orcomplete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton&endash;Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.
Synthesis of Finite State Machines: Logic Optimization is the second in a set of two monographs devoted to the synthesis of Finite State Machines (FSMs). The first volume, Synthesis of Finite State Machines: Functional Optimization, addresses functional optimization, whereas this one addresses logic optimization. The result of functional optimization is a symbolic description of an FSM which represents a sequential function chosen from a collection of permissible candidates. Logic optimization is the body of techniques for converting a symbolic description of an FSM into a hardware implementation. The mapping of a given symbolic representation into a two-valued logic implementation is called state encoding (or state assignment) and it impacts heavily area, speed, testability and power consumption of the realized circuit. The first part of the book introduces the relevant background, presents results previously scattered in the literature on the computational complexity of encoding problems, and surveys in depth old and new approaches to encoding in logic synthesis. The second part of the book presents two main results about symbolic minimization; a new procedure to find minimal two-level symbolic covers, under face, dominance and disjunctive constraints, and a unified frame to check encodability of encoding constraints and find codes of minimum length that satisfy them. The third part of the book introduces generalized prime implicants (GPIs), which are the counterpart, in symbolic minimization of two-level logic, to prime implicants in two-valued two-level minimization. GPIs enable the design of an exact procedure for two-level symbolic minimization, based on a covering step which is complicated by the need to guarantee encodability of the final cover. A new efficient algorithm to verify encodability of a selected cover is presented. If a cover is not encodable, it is shown how to augment it minimally until an encodable superset of GPIs is determined. To handle encodability the authors have extended the frame to satisfy encoding constraints presented in the second part. The covering problems generated in the minimization of GPIs tend to be very large. Recently large covering problems have been attacked successfully by representing the covering table with binary decision diagrams (BDD). In the fourth part of the book the authors introduce such techniques and extend them to the case of the implicit minimization of GPIs, where the encodability and augmentation steps are also performed implicitly. Synthesis of Finite State Machines: Logic Optimization will be of interest to researchers and professional engineers who work in the area of computer-aided design of integrated circuits.
This volume gathers selected papers presented at the Fourth Asian Workshop on Philosophical Logic, held in Beijing in October 2018. The contributions cover a wide variety of topics in modal logic (epistemic logic, temporal logic and dynamic logic), proof theory, algebraic logic, game logics, and philosophical foundations of logic. They also reflect the interdisciplinary nature of logic - a subject that has been studied in fields as diverse as philosophy, linguistics, mathematics, computer science and artificial intelligence. More specifically. The book also presents the latest developments in logic both in Asia and beyond.
An enlightening introduction to the study of logic: its history, philosophical foundations, and formal structures Logic: Inquiry, Argument, and Order is the first book of its kind to frame the study of introductory logic in terms of problems connected to wider issues of knowledge and judgment that arise in the context of racial, cultural, and religious diversity. With its accessible style and integration of philosophical inquiry and real-life concerns, this book offers a novel approach to the theory of logic and its relevance to questions of meaning and value that arise in the world around us. The book poses four problems for logic: Is logic separate from experience? Does logic require dualisms? Can logic reconcile opposed ways of understanding the world? And when things are divided, does the boundary have a logic? The author begins the exploration of these questions with a discussion of the process of analyzing and constructing arguments. Using the logical theories of C. S. Peirce, John Dewey, and Josiah Royce to frame the investigation, subsequent chapters outline the process of inquiry, the concept of communicative action, the nature of validity, categorical reasoning through the theory of the syllogism, and inductive reasoning and probability. The book concludes with a presentation of modal logic, propositional logic, and quantification. Logic is presented as emerging from the activities of inquiry and communication, allowing readers to understand even the most difficult aspects of formal logic as straightforward developments of the process of anticipating and taking action. Numerous practice problems use arguments related to issues of diversity and social theory, and the book introduces methods of proving validity that include Venn diagrams, natural deduction, and the method of tableaux. Logic: Inquiry, Argument, and Order is an ideal book for courses on philosophical methods and critical reasoning at the upper-undergraduate and graduate levels. It is also an insightful reference for anyone who would like to explore a cross-cultural approach to the topic of logic.
This superb exposition of a complex subject examines new developments in the theory and practice of computation from a mathematical perspective, with topics ranging from classical computability to complexity, from biocomputing to quantum computing. This book is suitable for researchers and graduate students in mathematics, philosophy, and computer science with a special interest in logic and foundational issues. Most useful to graduate students are the survey papers on computable analysis and biological computing. Logicians and theoretical physicists will also benefit from this book.
Lattice-valued Logic aims at establishing the logical foundation for uncertain information processing routinely performed by humans and artificial intelligence systems. In this textbook for the first time a general introduction on lattice-valued logic is given. It systematically summarizes research from the basic notions up to recent results on lattice implication algebras, lattice-valued logic systems based on lattice implication algebras, as well as the corresponding reasoning theories and methods. The book provides the suitable theoretical logical background of lattice-valued logic systems and supports newly designed intelligent uncertain-information-processing systems and a wide spectrum of intelligent learning tasks.
This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an introductory paper that surveys Prawitz's numerous contributions to proof theory and proof-theoretic semantics and puts his work into a somewhat broader perspective, both historically and systematically. Chapters include either in-depth studies of certain aspects of Dag Prawitz's work or address open research problems that are concerned with core issues in structural proof theory and range from philosophical essays to papers of a mathematical nature. Investigations into the necessity of thought and the theory of grounds and computational justifications as well as an examination of Prawitz's conception of the validity of inferences in the light of three "dogmas of proof-theoretic semantics" are included. More formal papers deal with the constructive behaviour of fragments of classical logic and fragments of the modal logic S4 among other topics. In addition, there are chapters about inversion principles, normalization of p roofs, and the notion of proof-theoretic harmony and other areas of a more mathematical persuasion. Dag Prawitz also writes a chapter in which he explains his current views on the epistemic dimension of proofs and addresses the question why some inferences succeed in conferring evidence on their conclusions when applied to premises for which one already possesses evidence.
Fuzzy logic is a recent revolutionary technology' which has brought together researchers from mathematics, engineering, computer science, cognitive and behavioral sciences, etc. The work in fuzzy technology at the Laboratory for International Fuzzy Engineering (LIFE) has been specifically applied to engineering problems. This book reflects the results of the work that has been undertaken at LIFE with chapters treating the following topical areas: Decision Support Systems, Intelligent Plant Operations Support, Fuzzy Modeling and Process Control, System Design, Image Understanding, Behavior Decisions for Mobile Robots, the Fuzzy Computer, and Fuzzy Neuro Systems. The book is a thorough analysis of research which has been implemented in the areas of fuzzy engineering technology. The analysis can be used to improve these specific applications or, perhaps more importantly, to investigate more sophisticated fuzzy control applications.
Natural duality theory is one of the major growth areas within general algebra. This text provides a short path to the forefront of research in duality theory. It presents a coherent approach to new results in the area, as well as exposing open problems. Unary algebras play a special role throughout the text. Individual unary algebras are relatively simple and easy to work with. But as a class they have a rich and complex entanglement with dualisability. This combination of local simplicity and global complexity ensures that, for the study of natural duality theory, unary algebras are an excellent source of examples and counterexamples. A number of results appear here for the first time. In particular, the text ends with an appendix that provides a new and definitive approach to the concept of the rank of a finite algebra and its relationship with strong dualisability.
Goguen categories extend the relational calculus and its categorical formalization to the fuzzy world. Starting from the fundamental concepts of sets, binary relations and lattices this book introduces several categorical formulations of an abstract theory of relations such as allegories, Dedekind categories and related structures. It is shown that neither theory is sufficiently rich to describe basic operations on fuzzy relations. The book then introduces Goguen categories and provides a comprehensive study of these structures including their representation theory, and the definability of norm-based operations. The power of the theory is demonstrated by a comprehensive example. A certain Goguen category is used to specify and to develop a fuzzy controller. Based on its abstract description as well as certain desirable properties and their formal proofs, a verified controller is derived without compromising the - sometimes - intuitive choice of norm-based operations by fuzzy engineers. |
You may like...
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
(1)
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R535
Discovery Miles 5 350
Theory and Applications of…
Florentin Smarandache, Madeline Al-Tahan
Hardcover
R7,022
Discovery Miles 70 220
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R484
Discovery Miles 4 840
Emerging Applications of Fuzzy Algebraic…
Chiranjibe Jana, Tapan Senapati, …
Hardcover
R8,190
Discovery Miles 81 900
Mathematical Proofs: A Transition to…
Gary Chartrand, Albert Polimeni, …
Paperback
R2,185
Discovery Miles 21 850
|