![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
Are you smarter than a Singaporean ten-year-old? Can you beat Sherlock Holmes? If you think the answer is yes - I challenge you to solve my problems. Here are 125 of the world's best brainteasers from the last two millennia, taking us from ancient China to medieval Europe, Victorian England to modern-day Japan, with stories of espionage, mathematical breakthroughs and puzzling rivalries along the way. Pit your wits against logic puzzles and kinship riddles, pangrams and river-crossing conundrums. Some solutions rely on a touch of cunning, others call for creativity, others need mercilessly logical thought. Some can only be solved be 2 per cent of the population. All are guaranteed to sharpen your mind. Let's get puzzling!
This is a continuation of Vol. 7 of Trends in Logic. It wil cover the wealth of recent developments of Lukasiewicz Logic and their algebras (Chang MV-algebras), with particular reference to (de Finetti) coherent evaluation of continuously valued events, (Renyi) conditionals for such events, related algorithms.
Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented.
On the history of the book: In the early 1990s several new methods and perspectives in au- mated deduction emerged. We just mention the superposition calculus, meta-term inference and schematization, deductive decision procedures, and automated model building. It was this last ?eld which brought the authors of this book together. In 1994 they met at the Conference on Automated Deduction (CADE-12) in Nancy and agreed upon the general point of view, that semantics and, in particular, construction of models should play a central role in the ?eld of automated deduction. In the following years the deduction groups of the laboratory LEIBNIZ at IMAG Grenoble and the University of Technology in Vienna organized several bilateral projects promoting this topic. This book emerged as a main result of this cooperation. The authors are aware of the fact, that the book does not cover all relevant methods of automated model building (also called model construction or model generation); instead the book focuses on deduction-based symbolic methods for the construction of Herbrand models developed in the last 12 years. Other methods of automated model building, in particular also ?nite model building, are mainly treated in the ?nal chapter; this chapter is less formal and detailed but gives a broader view on the topic and a comparison of di?erent approaches. Howtoreadthisbook: In the introduction we give an overview of automated deduction in a historical context, taking into account its relationship with the human views on formal and informal proofs.
Decision makers in managerial and public organizations often encounter de cision problems under conflict or competition, because they select strategies independently or by mutual agreement and therefore their payoffs are then affected by the strategies of the other decision makers. Their interests do not always coincide and are at times even completely opposed. Competition or partial cooperation among decision makers should be considered as an essen tial part of the problem when we deal with the decision making problems in organizations which consist of decision makers with conflicting interests. Game theory has been dealing with such problems and its techniques have been used as powerful analytical tools in the resolution process of the decision problems. The publication of the great work by J. von Neumann and O. Morgen stern in 1944 attracted attention of many people and laid the foundation of game theory. We can see remarkable advances in the field of game theory for analysis of economic situations and a number of books in the field have been published in recent years. The aim of game theory is to specify the behavior of each player so as to optimize the interests of the player. It then recommends a set of solutions as strategies so that the actions chosen by each decision maker (player) lead to an outcome most profitable for himself or her self."
This volume is both a tribute to Ulrich Felgner's research in algebra, logic, and set theory and a strong research contribution to these areas. Felgner's former students, friends and collaborators have contributed sixteen papers to this volume that highlight the unity of these three fields in the spirit of Ulrich Felgner's own research. The interested reader will find excellent original research surveys and papers that span the field from set theory without the axiom of choice via model-theoretic algebra to the mathematics of intonation.
This volume tackles Goedel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of that project, and then evaluates it, with an emphasis on the second stage. The book is organised around Goedel's use of Leibniz, Husserl and Brouwer. Far from considering past philosophers irrelevant to actual systematic concerns, Goedel embraced the use of historical authors to frame his own philosophical perspective. The philosophies of Leibniz and Husserl define his project, while Brouwer's intuitionism is its principal foil: the close affinities between phenomenology and intuitionism set the bar for Goedel's attempt to go far beyond intuitionism. The four central essays are `Monads and sets', `On the philosophical development of Kurt Goedel', `Goedel and intuitionism', and `Construction and constitution in mathematics'. The first analyses and criticises Goedel's attempt to justify, by an argument from analogy with the monadology, the reflection principle in set theory. It also provides further support for Goedel's idea that the monadology needs to be reconstructed phenomenologically, by showing that the unsupplemented monadology is not able to found mathematics directly. The second studies Goedel's reading of Husserl, its relation to Leibniz' monadology, and its influence on his publishe d writings. The third discusses how on various occasions Brouwer's intuitionism actually inspired Goedel's work, in particular the Dialectica Interpretation. The fourth addresses the question whether classical mathematics admits of the phenomenological foundation that Goedel envisaged, and concludes that it does not. The remaining essays provide further context. The essays collected here were written and published over the last decade. Notes have been added to record further thoughts, changes of mind, connections between the essays, and updates of references.
Two prisoners are told that they will be brought to a room and seated so that each can see the other. Hats will be placed on their heads; each hat is either red or green. The two prisoners must simultaneously submit a guess of their own hat color, and they both go free if at least one of them guesses correctly. While no communication is allowed once the hats have been placed, they will, however, be allowed to have a strategy session before being brought to the room. Is there a strategy ensuring their release? The answer turns out to be yes, and this is the simplest non-trivial example of a hat problem. This book deals with the question of how successfully one can predict the value of an arbitrary function at one or more points of its domain based on some knowledge of its values at other points. Topics range from hat problems that are accessible to everyone willing to think hard, to some advanced topics in set theory and infinitary combinatorics. For example, there is a method of predicting the value "f"("a") of a function f mapping the reals to the reals, based only on knowledge of "f"'s values on the open interval ("a" 1, "a"), and for every such function the prediction is incorrect only on a countable set that is nowhere dense. The monograph progresses from topics requiring fewer prerequisites to those requiring more, with most of the text being accessible to any graduate student in mathematics. The broad range of readership includes researchers, postdocs, and graduate students in the fields of set theory, mathematical logic, and combinatorics. The hope is that this book will bring together mathematicians from different areas to think about set theory via a very broad array of coordinated inference problems. "
Assessing the degree to which two objects, an object and a query, or two concepts are similar or compatible is a fundamental component of human reasoning and consequently is critical in the development of automated diagnosis, classification, information retrieval and decision systems. The assessment of similarity has played an important role in such diverse disciplines such as taxonomy, psychology, and the social sciences. Each discipline has proposed methods for quantifying similarity judgments suitable for its particular applications. This book presents a unified approach to quantifying similarity and compatibility within the framework of fuzzy set theory and examines the primary importance of these concepts in approximate reasoning. Examples of the application of similarity measures in various areas including expert systems, information retrieval, and intelligent database systems are provided.
Henkin-Keisler models emanate from a modification of the Henkin construction introduced by Keisler to motivate the definition of ultraproducts. Keisler modified the Henkin construction at that point at which `new' individual constants are introduced and did so in a way that illuminates a connection between Henkin-Keisler models and ultraproducts. The resulting construction can be viewed both as a specialization of the Henkin construction and as an alternative to the ultraproduct construction. These aspects of the Henkin-Keisler construction are utilized here to present a perspective on ultraproducts and their applications accessible to the reader familiar with Henkin's proof of the completeness of first order logic and naive set theory. This approach culminates in proofs of various forms of the Keisler-Shelah characterizations of elementary equivalence and elementary classes via Henkin-Keisler models. The presentation is self-contained and proofs of more advanced results from set theory are introduced as needed. Audience: Logicians in philosophy, computer science, linguistics and mathematics.
The theory of quasivarieties constitutes an independent direction in algebra and mathematical logic and specializes in a fragment of first-order logic-the so-called universal Horn logic. This treatise uniformly presents the principal directions of the theory from an effective algebraic approach developed by the author himself. A revolutionary exposition, this influential text contains a number of results never before published in book form, featuring in-depth commentary for applications of quasivarieties to graphs, convex geometries, and formal languages. Key features include coverage of the Birkhoff-Mal'tsev problem on the structure of lattices of quasivarieties, helpful exercises, and an extensive list of references.
This book contains the lectures given at the NATO ASI 910820 "Cellular Automata and Cooperative Systems" Meeting which was held at the Centre de Physique des Houches, France, from June 22 to July 2, 1992. This workshop brought together mathematical physicists, theoretical physicists and mathe maticians working in fields related to local interacting systems, cellular and probabilistic automata, statistical physics, and complexity theory, as well as applications of these fields. We would like to thank our sponsors and supporters whose interest and help was essential for the success of the meeting: the NATO Scientific Affairs Division, the DRET (Direction des Recherches, Etudes et Techniques), the Ministere des Affaires Etrangeres, the National Science Foundation. We would also like to thank all the secretaries who helped us during the preparation of the meeting, in particular Maryse Cohen-Solal (CPT, Marseille) and Janice Nowinski (Courant Institute, New York). We are grateful for the fine work of Mrs. Gladys Cavallone in preparing this volume."
This volume presents the results of approximately 15 years of work from researchers around the world on the use of fuzzy set theory to represent imprecision in databases. The maturity of the research in the discipline and the recent developments in commercial/industrial fuzzy databases provided an opportunity to produce this survey. Fuzzy Databases: Principles and Applications is self-contained providing background material on fuzzy sets and database theory. It is comprehensive covering all of the major approaches and models of fuzzy databases that have been developed including coverage of commercial/industrial systems and applications. Background and introductory material are provided in the first two chapters. The major approaches in fuzzy databases comprise the second part of the volume. This includes the use of similarity and proximity measures as the fuzzy techniques used to extend the relational data modeling and the use of possibility theory approaches in the relational model. Coverage includes extensions to the data model, querying approaches, functional dependencies and other topics including implementation issues, information measures, database security, alternative fuzzy data models, the IFO model, and the network data models. A number of object-oriented extensions are also discussed. The use of fuzzy data modeling in geographical information systems (GIS) and use of rough sets in rough and fuzzy rough relational data models are presented. Major emphasis has been given to applications and commercialization of fuzzy databases. Several specific industrial/commercial products and applications are described. These include approaches to developing fuzzy front-end systems andspecial-purpose systems incorporating fuzziness.
A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper 1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P."
Belief change is an emerging field of artificial intelligence and information science dedicated to the dynamics of information and the present book provides a state-of-the-art picture of its formal foundations. It deals with the addition, deletion and combination of pieces of information and, more generally, with the revision, updating and fusion of knowledge bases. The book offers an extensive coverage of, and seeks to reconcile, two traditions in the kinematics of belief that often ignore each other - the symbolic and the numerical (often probabilistic) approaches. Moreover, the work encompasses both revision and fusion problems, even though these two are also commonly investigated by different communities. Finally, the book presents the numerical view of belief change, beyond the probabilistic framework, covering such approaches as possibility theory, belief functions and convex gambles. The work thus presents a unified view of belief change operators, drawing from a widely scattered literature embracing philosophical logic, artificial intelligence, uncertainty modelling and database systems. The material is a clearly organised guide to the literature on the dynamics of epistemic states, knowledge bases and uncertain information, suitable for scholars and graduate students familiar with applied logic, knowledge representation and uncertain reasoning.
The book aims at surveying results in the application of fuzzy sets and fuzzy logic to economics and engineering. New results include fuzzy non-linear regression, fully fuzzified linear programming, fuzzy multi-period control, fuzzy network analysis, each using an evolutionary algorithm; fuzzy queuing decision analysis using possibility theory; fuzzy differential equations; fuzzy difference equations; fuzzy partial differential equations; fuzzy eigenvalues based on an evolutionary algorithm; fuzzy hierarchical analysis using an evolutionary algorithm; fuzzy integral equations. Other important topics covered are fuzzy input-output analysis; fuzzy mathematics of finance; fuzzy PERT (project evaluation and review technique). No previous knowledge of fuzzy sets is needed. The mathematical background is assumed to be elementary calculus.
This self-contained title demonstrates an important interplay between abstract and concrete operator theory. Key ideas are developed in a step-by-step approach, beginning with required background and historical material, and culminating in the final chapters with state-of-the-art topics. Good examples, bibliography and index make this text a valuable classroom or reference resource.
The IOth International Congress of Logic, Methodology and Philosophy of Science, which took place in Florence in August 1995, offered a vivid and comprehensive picture of the present state of research in all directions of Logic and Philosophy of Science. The final program counted 51 invited lectures and around 700 contributed papers, distributed in 15 sections. Following the tradition of previous LMPS-meetings, some authors, whose papers aroused particular interest, were invited to submit their works for publication in a collection of selected contributed papers. Due to the large number of interesting contributions, it was decided to split the collection into two distinct volumes: one covering the areas of Logic, Foundations of Mathematics and Computer Science, the other focusing on the general Philosophy of Science and the Foundations of Physics. As a leading choice criterion for the present volume, we tried to combine papers containing relevant technical results in pure and applied logic with papers devoted to conceptual analyses, deeply rooted in advanced present-day research. After all, we believe this is part of the genuine spirit underlying the whole enterprise of LMPS studies."
This is the only monograph devoted to the expressibility of finitely axiomatizable theories, a classical subject in mathematical logic. The volume summarizes investigations in the field that have led to much of the current progress, treating systematically all positive results concerning expressibility. Also included in this unique text are solutions to both the Vaught-Morely problem and the Hanf problem, and a number of new natural questions that provide prospects for further development of the theory.
The parametric lambda calculus is a metamodel for reasoning about various kinds of computations. Its syntactic definition is based on the notion of "sets of input values," and different lambda calculi can be obtained from it by instantiating such sets in suitable ways. The parametric lambda calculus is used as a tool for presenting in a uniform way basic notions of programming languages, and for studying with a uniform approach some lambda calculi modeling different kinds of computations, such as call-by-name, both in its lazy and non-lazy versions, and call-by-value. The parametric presentation allows us both to prove in one step all the fundamental properties of different calculi, and to compare them with each other. The book includes some classical results in the field of lambda calculi, but completely rephrased using the parametric approach, together with some new results. The lambda calculi are presented from a computer science viewpoint, with particular emphasis on their semantics, both operational and denotational. This book is dedicated to researchers, and can be used as a textbook for masters or Ph.D. courses on the foundations of computer science.
In opposition to the classical set theory of natural language, Nov k's highly original monograph offers a theory based on alternative and fuzzy sets. This new approach is firmly grounded in semantics and pragmatics, and accounts for the vagueness inherent in natural language-filling a large gap in our current knowledge. The theory will foster fruitful debate among researchers in linguistics and artificial intellegence.
The explanation of the formal duality of Kerdock and Preparata codes is one of the outstanding results in the field of applied algebra in the last few years. This result is related to the discovery of large sets of quad riphase sequences over Z4 whose correlation properties are better than those of the best binary sequences. Moreover, the correlation properties of sequences are closely related to difference properties of certain sets in (cyclic) groups. It is the purpose of this book to illustrate the connection between these three topics. Most articles grew out of lectures given at the NATO Ad vanced Study Institute on "Difference sets, sequences and their correlation properties." This workshop took place in Bad Windsheim (Germany) in August 1998. The editors thank the NATO Scientific Affairs Division for the generous support of this workshop. Without this support, the present collection of articles would not have been realized."
The popular literature on mathematical logic is rather extensive and written for the most varied categories of readers. College students or adults who read it in their free time may find here a vast number of thought-provoking logical problems. The reader who wishes to enrich his mathematical background in the hope that this will help him in his everyday life can discover detailed descriptions of practical (and quite often -- not so practical ) applications of logic. The large number of popular books on logic has given rise to the hope that by applying mathematical logic, students will finally learn how to distinguish between necessary and sufficient conditions and other points of logic in the college course in mathematics. But the habit of teachers of mathematical analysis, for example, to stick to problems dealing with sequences without limit, uniformly continuous functions, etc. has, unfortunately, led to the writing of textbooks that present prescriptions for the mechanical construction of definitions of negative concepts which seem to obviate the need for any thinking on the reader's part. We are most certainly not able to enumerate everything the reader may draw out of existing books on mathematical logic, however. |
You may like...
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R522
Discovery Miles 5 220
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
|