Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This book treats modal logic as a theory, with several subtheories,
such as completeness theory, correspondence theory, duality theory
and transfer theory and is intended as a course in modal logic for
students who have had prior contact with modal logic and who wish
to study it more deeply. It presupposes training in mathematical or
logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book.
We do not perceive the present as it is and in totality, nor do we infer the future from the present with any high degree of dependability, nor yet do we accurately know the consequences of our own actions. In addition, there is a fourth source of error to be taken into account, for we do not execute actions in the precise form in which they are imaged and willed. Frank H. Knight [R4.34, p. 202] The "degree" of certainty of confidence felt in the conclusion after it is reached cannot be ignored, for it is of the greatest practical signi- cance. The action which follows upon an opinion depends as much upon the amount of confidence in that opinion as it does upon fav- ableness of the opinion itself. The ultimate logic, or psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life and mind. Frank H. Knight [R4.34, p. 226-227] With some inaccuracy, description of uncertain consequences can be classified into two categories, those which use exclusively the language of probability distributions and those which call for some other principle, either to replace or supplement.
MATRIX is Australia's international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
This work presents the research results of students of the Graduiertenkolleg "Communication-Based Systems" to an international community. To stimulate the scientific discussion, experts have been invited to give their views on the following research areas: formal specification and mathematical foundations of distributed systems using process algebra, graph transformations, process calculi and temporal logics; performance evaluation, dependability modelling and analysis of real-time systems with different kinds of timed Petri-nets; specification and analysis of communication protocols; reliability, security and dependability in distributed systems; object orientation in distributed systems architecture; software development and concepts for distributed applications; computer network architecture and management; and language concepts for distributed systems.
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein's Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane's work in the early 1940's and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.
Philosophy involves a criticism of scientific knowledge, not from a point of view ultimately different from that of science, but from a point of view less concerned with details and more concerned with the h- mony of the body of special sciences. Here as elsewhere, while the older logic shut out possibilities and imprisoned imagination within the walls of the familiar, the newer logic shows rather what may happen, and refuses to decide as to what must happen. Bertrand Russell At any particular stage in the development of humanity knowledge comes up against limits set by the necessarily limited character of the experience available and the existing means of obtaining knowledge. But humanity advances by overcoming such limits. New experience throws down the limits of old experience; new techniques, new means of obtaining knowledge throw down the limits of old techniques and old means of obtaining knowledge. New limits then once again appear. But there is no more reason to suppose these new limits absolute and final than there was to suppose the old ones absolute and final.
Action theory is the object of growing attention in a variety of scientific disciplines and this is the first volume to offer a synthetic view of the range of approaches possible in the topic. The volume focuses on the nexus of formal action theory with a startlingly diverse set of subjects, which range from logic, linguistics, artificial intelligence and automata theory to jurisprudence, deontology and economics. It covers semantic, mathematical and logical aspects of action, showing how the problem of action breaks the boundaries of traditional branches of logic located in syntactics and semantics and now lies on lies on the borderline between logical pragmatics and praxeology. The chapters here focus on specialized tasks in formal action theory, beginning with a thorough description and formalization of the language of action and moving through material on the differing models of action theory to focus on probabilistic models, the relations of formal action theory to deontic logic and its key applications in algorithmic and programming theory. The coverage thus fills a notable lacuna in the literary corpus and offers solid formal underpinning in cognitive science by approaching the problem of cognition as a composite action of mind.
area and in applications to linguistics, formal epistemology, and the study of norms. The second contains papers on non-classical and many-valued logics, with an eye on applications in computer science and through it to engineering. The third concerns the logic of belief management, whichis likewise closely connected with recent work in computer science but also links directly with epistemology, the philosophy of science, the study of legal and other normative systems, and cognitive science. The grouping is of course rough, for there are contributions to the volume that lie astride a boundary; at least one of them is relevant, from a very abstract perspective, to all three areas. We say a few words about each of the individual chapters, to relate them to each other and the general outlook of the volume. Modal Logics The ?rst bundle of papers in this volume contains contribution to modal logic. Three of them examine general problems that arise for all kinds of modal logics. The ?rst paper is essentially semantical in its approach, the second proof-theoretic, the third semantical again: Commutativity of quanti?ers in varying-domain Kripke models, by R. Goldblatt and I. Hodkinson, investigates the possibility of com- tation (i.e. reversing the order) for quanti?ers in ?rst-order modal logics interpreted over relational models with varying domains. The authors study a possible-worlds style structural model theory that does not v- idate commutation, but satis?es all the axioms originally presented by Kripke for his familiar semantics for ?rst-order modal logic."
This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.
This book provides an introduction to some key subjects in algebra and topology. It consists of comprehensive texts of some hours courses on the preliminaries for several advanced theories in (categorical) algebra and topology. Often, this kind of presentations is not so easy to find in the literature, where one begins articles by assuming a lot of knowledge in the field. This volume can both help young researchers to quickly get into the subject by offering a kind of " roadmap " and also help master students to be aware of the basics of other research directions in these fields before deciding to specialize in one of them. Furthermore, it can be used by established researchers who need a particular result for their own research and do not want to go through several research papers in order to understand a single proof. Although the chapters can be read as " self-contained " chapters, the authors have tried to coordinate the texts in order to make them complementary. The seven chapters of this volume correspond to the seven courses taught in two Summer Schools that took place in Louvain-la-Neuve in the frame of the project Fonds d'Appui a l'Internationalisation of the Universite catholique de Louvain to strengthen the collaborations with the universities of Coimbra, Padova and Poitiers, within the Coimbra Group.
Multivariate Inequalities of Kolmogorov Type and Their Applications.- Monotone Iterative Technique for Impulsive Differential-Difference Equations with Variable Impulsive Perturbations.- Multivariate Cosine Wavelets.- On Almost Interpolation by Multivariate Splines.- Locally Linearly Independent Systems and Almost Interpolation.- Exponential-Type Approximation in Multivariate Harmonic Hilbert Spaces.- Interpolation by Continuous Function Spaces.- Discrete Characterization of Besov Spaces and its Applications to Stochastics.- One-Sided Approximation and Interpolation Operators Generating Hyperbolic Sigma-Pi Neural Networks.- Unconstrained Minimization of Quadratic Splines and Applications.- Interpolation by Translates of a Basis function.- On the Sup-Norm Condition Number of the Multivariate Triangular Bernstein Basis.- Integration Methods of Clenshaw-Curtis Type, Based on Four Kinds of Chebyshev Polynomials.- Tensor Products of Convex Cones.- The Curse of Dimension and a Universal Method for Numerical Integration.- Interpolation by Bivariate Splines on Crosscut Partitions.- Necessary and Sufficient Conditions for Orthonormality of Scaling Vectors.- Trigonometric Preconditioners for Block Toeplitz Systems.- The Average Size of Certain Gram-Determinants and Interpolation on Non-Compact Sets.- Radial Basis Functions Viewed From Cubic Splines.- Wavelet Modelling of High Resolution Radar Imaging and Clinical Magnetic Resonance Tomography.- A New Interpretation of the Sampling Theorem and its Extensions.- Gridded Data Interpolation with Restrictions on the First Order Derivatives.- Affine Frames and Multiresolution.- List of Participants.
This is a collection of articles on set theory written by some of the participants in theResearchProgrammeonSetTheoryanditsApplicationsthattookplaceatthe Centre de Recerca Matem' atica (CRM) in Bellaterra (Barcelona). The Programme run from September 2003 to July 2004 and included an international conference on set theory in September 2003, an advanced course on Ramsey methods in ? analysis in January 2004, and a joint CRM-ICREA workshop on the foundations of set theory in June 2004, the latter held in Barcelona. A total of 33 short and long term visitors from 15 countries participated in the Programme. This volume consists of two parts, the ?rst containing survey papers on some of the mainstream areas of set theory, and the second containing original research papers. All of them are authored by visitors who took part in the set theory Programme or by participants in the Programme's activities. The survey papers cover topics as Omega-logic, applications of set theory to lattice theory and Boolean algebras, real-valued measurable cardinals, complexity of sets and relations in continuum theory, weak subsystems of axiomatic set t- ory, de?nable versions of large cardinals, and selection theory for open covers of topological spaces. As for the research papers, they range from topics such as the number of near-coherence classes of ultra?lters, the consistency strength of bounded forcing axioms,P (?) combinatorics,someapplicationsof morasses,subgroupsofAbelian ? Polish groups, adding club subsets of ? with ?nite conditions, the consistency 2 strength of mutual stationarity, and new axioms of set theory.
This is the first text and monograph about DNA computing, a molecular approach that might revolutionize our thinking and ideas about computing. Although it is too soon to predict whether computer hardware to change from silicon to carbon and from microchips to DNA molecules, the theoretical premises have already been studied extensively. The book starts with an introduction to DNA-related matters, the basics of biochemistry and language and computation theory, and progresses to the most advanced mathematical theory developed so far in the area. All three authors are pioneers in the theory of DNA computing. Apart from being well-known scientists, they are known for their lucid writing. Many of their previous books have become classics in their field, and this book too is sure to follow their example.
Our knowledge of mathematics has structured much of what we think we know about ourselves as individuals and communities, shaping our psychologies, sociologies, and economies. In pursuit of a more predictable and more controllable cosmos, we have extended mathematical insights and methods to more and more aspects of the world. Today those powers are greater than ever, as computation is applied to virtually every aspect of human activity. Yet, in the process, are we losing sight of the human? When we apply mathematics so broadly, what do we gain and what do we lose, and at what risk to humanity? These are the questions that David and Ricardo L. Nirenberg ask in Uncountable, a provocative account of how numerical relations became the cornerstone of human claims to knowledge, truth, and certainty. There is a limit to these number-based claims, they argue, which they set out to explore. The Nirenbergs, father and son, bring together their backgrounds in math, history, literature, religion, and philosophy, interweaving scientific experiments with readings of poems, setting crises in mathematics alongside world wars, and putting medieval Muslim and Buddhist philosophers in conversation with Einstein, Schroedinger, and other giants of modern physics. The result is a powerful lesson in what counts as knowledge and its deepest implications for how we live our lives.
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
The volume analyses and develops David Makinson s efforts to make classical logic useful outside its most obvious application areas. The book contains chapters that analyse, appraise, or reshape Makinson s work and chapters that develop themes emerging from his contributions. These are grouped into major areas to which Makinsons has made highly influential contributions and the volume in its entirety is divided into four sections, each devoted to a particular area of logic: belief change, uncertain reasoning, normative systems and the resources of classical logic. Among the contributions included in the volume, one chapter focuses on the inferential preferential method, i.e. the combined use of classical logic and mechanisms of preference and choice and provides examples from Makinson s work in non-monotonic and defeasible reasoning and belief revision. One chapter offers a short autobiography by Makinson which details his discovery of modern logic, his travels across continents and reveals his intellectual encounters and inspirations. The chapter also contains an unusually explicit statement on his views on the (limited but important) role of logic in philosophy."
The papers presented at the Symposium focused mainly on two fields of interest. First, there were papers dealing with the theoretical background of fuzzy logic and with applications of fuzzy reasoning to the problems of artificial intelligence, robotics and expert systems. Second, quite a large number of papers were devoted to fuzzy approaches to modelling of decision-making situations under uncertainty and vagueness and their applications to the evaluation of alternatives, system control and optimization.Apart from that, there were also some interesting contributions from other areas, like fuzzy classifications and the use of fuzzy approaches in quantum physics.This volume contains the most valuable and interesting papers presented at the Symposium and will be of use to all those researchers interested in fuzzy set theory and its applications.
"Conflict, Complexity and Mathematical Social Science" provides a foundational mathematical approach to the modelling of social conflict. The book illustrates how theory and evidence can be mathematically deepened and how investigations grounded in social choice theory can provide the evidence needed to inform social practice. Countering criticism from constructivist viewpoints it shows how discourse is grounded in mathematical logic and mathematical structure. The modelling of social conflict is viewed as an application of mathematical social science and relevant models are drawn from each field of mathematical psychology, mathematical sociology, mathematical political science and mathematical economics. Unique in its multidisciplinary focus the book brings together powerful mathematical conceptualisations of the social world from a wide range of separate areas of inquiry, thereby providing a strong conceptual framework and an integrated account of social situations. It is a vital resource for all researchers in peace science, peace and conflict studies, politics, international relations, mathematical modelling in the social sciences and complexity theory.
Reviews of the first edition: ..".Gerstein wants-very gently-to teach his students to think. He wants to show them how to wrestle with a problem (one that is more sophisticated than "plug and chug"), how to build a solution, and ultimately he wants to teach the students to take a statement and develop a way to prove it...Gerstein writes with a certain flair that I think students will find appealing. For instance, after his discussion of cardinals he has a section entitled Languages and Finite Automata. This allows him to illustrate some of the ideas he has been discussing with problems that almost anyone can understand, but most importantly he shows how these rather transparent problems can be subjected to a mathematical analysis. His discussion of how a machine might determine whether the sequence of words "Celui fromage de la parce que maintenant" is a legitimate French sentence is just delightful (and even more so if one knows a little French.)...I am confident that a student who works through Gerstein's book will really come away with (i) some mathematical technique, and (ii) some mathematical knowledge. -Steven Krantz, American Mathematical Monthly "This very elementary book is intended to be a textbook for a one-term course which introduces students into the basic notions of any higher mathematics courses...The explanations of the basic notions are combined with some main theorems, illustrated by examples (with solutions if necessary) and complemented by exercises. The book is well written and should be easily understandable to any beginning student." -S. Gottwald, Zentralblatt This textbook is intended for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, etc. It contains a wide-ranging assortment of examples and imagery to motivate and to enhance the underlying intuitions, as well as numerous exercises and a solutions manual for professors. The new material in this second edition includes four more topics in number theory, a brief introduction to complex numbers, and a section on graph theory and combinatorial topics related to graphs. Introducing these additional topics gives the reader an even broader view of the mathematical experience.
This book consolidates and extends the authors' work on the connection between iconicity and abductive inference. It emphasizes a pragmatic, experimental and fallibilist view of knowledge without sacrificing formal rigor. Within this context, the book focuses particularly on scientific knowledge and its prevalent use of mathematics. To find an answer to the question "What kind of experimental activity is the scientific employment of mathematics?" the book addresses the problems involved in formalizing abductive cognition. For this, it implements the concept and method of iconicity, modeling this theoretical framework mathematically through category theory and topoi. Peirce's concept of iconic signs is treated in depth, and it is shown how Peirce's diagrammatic logical notation of Existential Graphs makes use of iconicity and how important features of this iconicity are representable within category theory. Alain Badiou's set-theoretical model of truth procedures and his relational sheaf-based theory of phenomenology are then integrated within the Peircean logical context. Finally, the book opens the path towards a more naturalist interpretation of the abductive models developed in Peirce and Badiou through an analysis of several recent attempts to reformulate quantum mechanics with categorical methods. Overall, the book offers a comprehensive and rigorous overview of past approaches to iconic semiotics and abduction, and it encompasses new extensions of these methods towards an innovative naturalist interpretation of abductive reasoning.
Can a line be analysed mathematically such a way that it does not fall apart into a set of discrete points? Are there objects of pure mathematics that can change through time? L. E. J. Brouwer argued that the two questions are related and that the answer to both is "yes," introducing the concept of choice sequences. This book subjects Brouwer's choice sequences to a phenomenological critique in the style of Husserl.
Starting with simple examples showing the relevance of cutting and pasting logics, the monograph develops a mathematical theory of combining and decomposing logics, ranging from propositional and first-order based logics to higher-order based logics as well as to non-truth functional logics. The theory covers mechanisms for combining semantic structures and deductive systems either of the same or different nature. The issue of preservation of properties is addressed.
The book is about Gentzen calculi for (the main systems of) modal logic. It is divided into three parts. In the first partwe introduce and discuss the main philosophical ideas related to proof theory, and we try to identify criteria for distinguishing good sequent calculi. In the second part we present the several attempts made from the 50's until today to provide modal logic with Gentzen calculi. In the third and and final part we analyse new calculi for modal logics, called tree-hypersequent calculi, which were recently introduced by the author. We show in a precise and clear way the main results that can be proved with and about them. |
You may like...
Theory and Applications of…
Florentin Smarandache, Madeline Al-Tahan
Hardcover
R7,022
Discovery Miles 70 220
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R535
Discovery Miles 5 350
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
|