![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, for example, the cost involved when executing a transition, the resources or time needed for this, or the probability or reliability of its successful execution. Weights can also be added to classical automata with infinite state sets like pushdown automata, and this extension constitutes the general concept of weighted automata. Since their introduction in the 1960s they have stimulated research in related areas of theoretical computer science, including formal language theory, algebra, logic, and discrete structures. Moreover, weighted automata and weighted context-free grammars have found application in natural-language processing, speech recognition, and digital image compression. This book covers all the main aspects of weighted automata and formal power series methods, ranging from theory to applications. The contributors are the leading experts in their respective areas, and each chapter presents a detailed survey of the state of the art and pointers to future research. The chapters in Part I cover the foundations of the theory of weighted automata, specifically addressing semirings, power series, and fixed point theory. Part II investigates different concepts of weighted recognizability. Part III examines alternative types of weighted automata and various discrete structures other than words. Finally, Part IV deals with applications of weighted automata, including digital image compression, fuzzy languages, model checking, and natural-language processing. Computer scientists and mathematicians will find this book an excellent survey and reference volume, and it will also be a valuable resource for students exploring this exciting research area.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
Let's try to play the music and not the background. Ornette Coleman, liner notes of the LP "Free Jazz" 20] WhenIbegantocreateacourseonfreejazz, theriskofsuchanenterprise was immediately apparent: I knew that Cecil Taylor had failed to teach such a matter, and that for other, more academic instructors, the topic was still a sort of outlandish adventure. To be clear, we are not talking about tea- ing improvisation here-a di?erent, and also problematic, matter-rather, we wish to create a scholarly discourse about free jazz as a cultural achievement, and follow its genealogy from the American jazz tradition through its various outbranchings, suchastheEuropeanandJapanesejazzconceptionsandint- pretations. We also wish to discuss some of the underlying mechanisms that are extant in free improvisation, things that could be called technical aspects. Such a discourse bears the ?avor of a contradicto in adjecto: Teachingthe unteachable, the very negation of rules, above all those posited by white jazz theorists, and talking about the making of sounds without aiming at so-called factual results and all those intellectual sedimentations: is this not a suicidal topic? My own endeavors as a free jazz pianist have informed and advanced my conviction that this art has never been theorized in a satisfactory way, not even by Ekkehard Jost in his unequaled, phenomenologically precise p- neering book "Free Jazz" 57].
This book features a unique approach to the teaching of mathematical logic by putting it in the context of the puzzles and paradoxes of common language and rational thought. It serves as a bridge from the author 's puzzle books to his technical writing in the fascinating field of mathematical logic. Using the logic of lying and truth-telling, the author introduces the readers to informal reasoning preparing them for the formal study of symbolic logic, from propositional logic to first-order logic, a subject that has many important applications to philosophy, mathematics, and computer science. The book includes a journey through the amazing labyrinths of infinity, which have stirred the imagination of mankind as much, if not more, than any other subject.
The book offers a comprehensive survey of intuitionistic fuzzy logics. By reporting on both the author's research and others' findings, it provides readers with a complete overview of the field and highlights key issues and open problems, thus suggesting new research directions. Starting with an introduction to the basic elements of intuitionistic fuzzy propositional calculus, it then provides a guide to the use of intuitionistic fuzzy operators and quantifiers, and lastly presents state-of-the-art applications of intuitionistic fuzzy sets. The book is a valuable reference resource for graduate students and researchers alike.
Logic networks and automata are facets of digital systems. The change of the design of logic networks from skills and art into a scientific discipline was possible by the development of the underlying mathematical theory called the Switching Theory. The fundamentals of this theory come from the attempts towards an algebraic description of laws of thoughts presented in the works by George J. Boole and the works on logic by Augustus De Morgan. As often the case in engineering, when the importance of a problem and the need for solving it reach certain limits, the solutions are searched by many scholars in different parts of the word, simultaneously or at about the same time, however, quite independently and often unaware of the work by other scholars. The formulation and rise of Switching Theory is such an example. This book presents a brief account of the developments of Switching Theory and highlights some less known facts in the history of it. The readers will find the book a fresh look into the development of the field revealing how difficult it has been to arrive at many of the concepts that we now consider obvious . Researchers in the history or philosophy of computing will find this book a valuable source of information that complements the standard presentations of the topic.
This open access book examines the many contributions of Paul Lorenzen, an outstanding philosopher from the latter half of the 20th century. It features papers focused on integrating Lorenzen's original approach into the history of logic and mathematics. The papers also explore how practitioners can implement Lorenzen's systematical ideas in today's debates on proof-theoretic semantics, databank management, and stochastics. Coverage details key contributions of Lorenzen to constructive mathematics, Lorenzen's work on lattice-groups and divisibility theory, and modern set theory and Lorenzen's critique of actual infinity. The contributors also look at the main problem of Grundlagenforschung and Lorenzen's consistency proof and Hilbert's larger program. In addition, the papers offer a constructive examination of a Russell-style Ramified Type Theory and a way out of the circularity puzzle within the operative justification of logic and mathematics. Paul Lorenzen's name is associated with the Erlangen School of Methodical Constructivism, of which the approach in linguistic philosophy and philosophy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. This volume features 10 papers from a meeting that took place at the University of Konstanz.
This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
The Equation of Knowledge: From Bayes' Rule to a Unified Philosophy of Science introduces readers to the Bayesian approach to science: teasing out the link between probability and knowledge. The author strives to make this book accessible to a very broad audience, suitable for professionals, students, and academics, as well as the enthusiastic amateur scientist/mathematician. This book also shows how Bayesianism sheds new light on nearly all areas of knowledge, from philosophy to mathematics, science and engineering, but also law, politics and everyday decision-making. Bayesian thinking is an important topic for research, which has seen dramatic progress in the recent years, and has a significant role to play in the understanding and development of AI and Machine Learning, among many other things. This book seeks to act as a tool for proselytising the benefits and limits of Bayesianism to a wider public. Features Presents the Bayesian approach as a unifying scientific method for a wide range of topics Suitable for a broad audience, including professionals, students, and academics Provides a more accessible, philosophical introduction to the subject that is offered elsewhere
This book uncovers mathematical structures underlying natural intelligence and applies category theory as a modeling language for understanding human cognition, giving readers new insights into the nature of human thought. In this context, the book explores various topics and questions, such as the human representation of the number system, why our counting ability is different from that which is evident among non-human organisms, and why the idea of zero is so difficult to grasp. The book is organized into three parts: the first introduces the general reason for studying general structures underlying the human mind; the second part introduces category theory as a modeling language and use it for exposing the deep and fascinating structures underlying human cognition; and the third applies the general principles and ideas of the first two parts to reaching a better understanding of challenging aspects of the human mind such as our understanding of the number system, the metaphorical nature of our thinking and the logic of our unconscious dynamics.
This book extends the theory of revealed preference to fuzzy choice functions, providing applications to multicriteria decision making problems. The main topics of revealed preference theory are treated in the framework of fuzzy choice functions. New topics, such as the degree of dominance and similarity of vague choices, are developed. The results are applied to economic problems where partial information and human subjectivity involve vague choices and vague preferences.
This book provides an overview of the confluence of ideas in Turing's era and work and examines the impact of his work on mathematical logic and theoretical computer science. It combines contributions by well-known scientists on the history and philosophy of computability theory as well as on generalised Turing computability. By looking at the roots and at the philosophical and technical influence of Turing's work, it is possible to gather new perspectives and new research topics which might be considered as a continuation of Turing's working ideas well into the 21st century. The Stored-Program Universal Computer: Did Zuse Anticipate Turing and von Neumann?" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com
Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Goedel's theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines.
Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.
This book treats modal logic as a theory, with several subtheories,
such as completeness theory, correspondence theory, duality theory
and transfer theory and is intended as a course in modal logic for
students who have had prior contact with modal logic and who wish
to study it more deeply. It presupposes training in mathematical or
logic. Very little specific knowledge is presupposed, most results
which are needed are proved in this book.
In this volume, the author investigates and argues for, a particular answer to the question: What is the right way to logically analyze modalities from natural language within formal languages? The answer is: by formalizing modal expressions in terms of predicates. But, as in the case of truth, the most intuitive modal principles lead to paradox once the modal notions are conceived as predicates. The book discusses the philosophical interpretation of these modal paradoxes and argues that any satisfactory approach to modality will have to face the paradoxes independently of the grammatical category of the modal notion. By systematizing modal principles with respect to their joint consistency and inconsistency, Stern provides an overview of the options and limitations of the predicate approach to modality that may serve as a useful starting point for future work on predicate approaches to modality. Stern also develops a general strategy for constructing philosophically attractive theories of modal notions conceived as predicates. The idea is to characterize the modal predicate by appeal to its interaction with the truth predicate. This strategy is put to use by developing the modal theories Modal Friedman-Sheard and Modal Kripke-Feferman.
The study of linear positive operators is an area of mathematical studies with significant relevance to studies of computer-aided geometric design, numerical analysis, and differential equations. This book focuses on the convergence of linear positive operators in real and complex domains. The theoretical aspects of these operators have been an active area of research over the past few decades. In this volume, authors Gupta and Agarwal explore new and more efficient methods of applying this research to studies in Optimization and Analysis. The text will be of interest to upper-level students seeking an introduction to the field and to researchers developing innovative approaches.
This work presents the research results of students of the Graduiertenkolleg "Communication-Based Systems" to an international community. To stimulate the scientific discussion, experts have been invited to give their views on the following research areas: formal specification and mathematical foundations of distributed systems using process algebra, graph transformations, process calculi and temporal logics; performance evaluation, dependability modelling and analysis of real-time systems with different kinds of timed Petri-nets; specification and analysis of communication protocols; reliability, security and dependability in distributed systems; object orientation in distributed systems architecture; software development and concepts for distributed applications; computer network architecture and management; and language concepts for distributed systems.
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.
This book presents four mathematical essays which explore the foundations of mathematics and related topics ranging from philosophy and logic to modern computer mathematics. While connected to the historical evolution of these concepts, the essays place strong emphasis on developments still to come. The book originated in a 2002 symposium celebrating the work of Bruno Buchberger, Professor of Computer Mathematics at Johannes Kepler University, Linz, Austria, on the occasion of his 60th birthday. Among many other accomplishments, Professor Buchberger in 1985 was the founding editor of the Journal of Symbolic Computation; the founder of the Research Institute for Symbolic Computation (RISC) and its chairman from 1987-2000; the founder in 1990 of the Softwarepark Hagenberg, Austria, and since then its director. More than a decade in the making, Mathematics, Computer Science and Logic - A Never Ending Story includes essays by leading authorities, on such topics as mathematical foundations from the perspective of computer verification; a symbolic-computational philosophy and methodology for mathematics; the role of logic and algebra in software engineering; and new directions in the foundations of mathematics. These inspiring essays invite general, mathematically interested readers to share state-of-the-art ideas which advance the never ending story of mathematics, computer science and logic. Mathematics, Computer Science and Logic - A Never Ending Story is edited by Professor Peter Paule, Bruno Buchberger s successor as director of the Research Institute for Symbolic Computation. "
We do not perceive the present as it is and in totality, nor do we infer the future from the present with any high degree of dependability, nor yet do we accurately know the consequences of our own actions. In addition, there is a fourth source of error to be taken into account, for we do not execute actions in the precise form in which they are imaged and willed. Frank H. Knight [R4.34, p. 202] The "degree" of certainty of confidence felt in the conclusion after it is reached cannot be ignored, for it is of the greatest practical signi- cance. The action which follows upon an opinion depends as much upon the amount of confidence in that opinion as it does upon fav- ableness of the opinion itself. The ultimate logic, or psychology, of these deliberations is obscure, a part of the scientifically unfathomable mystery of life and mind. Frank H. Knight [R4.34, p. 226-227] With some inaccuracy, description of uncertain consequences can be classified into two categories, those which use exclusively the language of probability distributions and those which call for some other principle, either to replace or supplement.
This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein's Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane's work in the early 1940's and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists. |
![]() ![]() You may like...
Introduction to Data Systems - Building…
Thomas Bressoud, David White
Hardcover
R2,470
Discovery Miles 24 700
Programming for Hybrid Multi/Manycore…
John Levesque, Aaron Vose
Paperback
R1,492
Discovery Miles 14 920
Microeconomics - South African Edition
Gregory Mankiw, Mark Taylor, …
Hardcover
R594
Discovery Miles 5 940
Emerging Trends in Terahertz Engineering…
Arindam Biswas, Amit Banerjee, …
Hardcover
R3,811
Discovery Miles 38 110
|