Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Modern mathematical logic would not exist without the analytical tools first developed by George Boole in The Mathematical Analysis of Logic and The Laws of Thought. The influence of the Boolean school on the development of logic, always recognised but long underestimated, has recently become a major research topic. This collection is the first anthology of works on Boole. It contains two works published in 1865, the year of Boole's death, but never reprinted, as well as several classic studies of recent decades and ten original contributions appearing here for the first time. From the programme of the English Algebraic School to Boole's use of operator methods, from the problem of interpretability to that of psychologism, a full range of issues is covered. The Boole Anthology is indispensable to Boole studies and will remain so for years to come.
New discoveries about algorithms are leading scientists beyond the
Church-Turing Thesis, which governs the "algorithmic universe" and
asserts the conventionality of recursive algorithms. A new paradigm
for computation, the super-recursive algorithm, offers promising
prospects for algorithms of much greater computing power and
efficiency. * Describes the strengthening link between the theory of super-recursive algorithms and actual algorithms close to practical realization * Examines the theory's basis as a foundation for advancements in computing, information science, and related technologies * Encompasses and systematizes all main types of mathematical models of algorithms * Highlights how super-recursive algorithms pave the way for more advanced design, utilization, and maintenance of computers * Examines and restructures the existing variety of mathematical models of complexity of algorithms and computation, introducing new models * Possesses a comprehensive bibliography and index
Blending Approximations with Sine Functions.- Quasi-interpolation in the Absence of Polynomial Reproduction.- Estimating the Condition Number for Multivariate Interpolation Problems.- Wavelets on a Bounded Interval.- Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations.- Rate of Approximation of Weighted Derivatives by Linear Combinations of SMD Operators.- Approximation by Multivariate Splines: an Application of Boolean Methods.- Lm, ?, s-Splines in ?d.- Constructive Multivariate Approximation via Sigmoidal Functions with Applications to Neural Networks.- Spline-Wavelets of Minimal Support.- Necessary Conditions for Local Best Chebyshev Approximations by Splines with Free Knots.- C1 Interpolation on Higher-Dimensional Analogs of the 4-Direction Mesh.- Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid.- The L2-Approximation Orders of Principal Shift-Invariant Spaces Generated by a Radial Basis Function.- A Multi-Parameter Method for Nonlinear Least-Squares Approximation.- Analog VLSI Networks.- Converse Theorems for Approximation on Discrete Sets II.- A Dual Method for Smoothing Histograms using Nonnegative C1-Splines.- Segment Approximation By Using Linear Functionals.- Construction of Monotone Extensions to Boundary Function
AI Metaheuristics for Information Security in Digital Media examines the latest developments in AI-based metaheuristics algorithms with applications in information security for digital media. It highlights the importance of several security parameters, their analysis, and validations for different practical applications. Drawing on multidisciplinary research including computer vision, machine learning, artificial intelligence, modified/newly developed metaheuristics algorithms, it will enhance information security for society. It includes state-of-the-art research with illustrations and exercises throughout.
This book provides an account of those parts of contemporary set theory that are relevant to other areas of pure mathematics. Intended for advanced undergraduates and beginning graduate students, the text is written in an easy-going style, with a minimum of formalism. The book begins with a review of "naive" set theory; it then develops the Zermelo-Fraenkel axioms of the theory, showing how they arise naturally from a rigorous answer to the question, "what is a set?" After discussing the ordinal and cardinal numbers, the book then delves into contemporary set theory, covering such topics as: the Borel hierarchy, stationary sets and regressive functions, and Lebesgue measure. Two chapters present an extension of the Zermelo-Fraenkel theory, discussing the axiom of constructibility and the question of provability in set theory. A final chapter presents an account of an alternative conception of set theory that has proved useful in computer science, the non-well-founded set theory of Peter Aczel. The author is a well-known mathematician and the editor of the "Computers in Mathematics" column in the AMS Notices and of FOCUS, the magazine published by the MAA.
Propositional Logics presents the history, philosophy, and mathematics of the major systems of propositional logic. Classical logic, modal logics, many-valued logics, intuitionism, paraconsistent logics, and dependent implication are examined in separate chapters. Each begins with a motivation in the originators' own terms, followed by the standard formal semantics, syntax, and completeness theorem. The chapters on the various logics are largely self-contained so that the book can be used as a reference. An appendix summarizes the formal semantics and axiomatizations of the logics. The view that unifies the exposition is that propositional logics comprise a spectrum. As the aspect of propositions under consideration varies, the logic varies. Each logic is shown to fall naturally within a general framework for semantics. A theory of translations between logics is presented that allows for further comparisons, and necessary conditions are given for a translation to preserve meaning. For this third edition the material has been re-organized to make the text easier to study, and a new section on paraconsistent logics with simple semantics has been added which challenges standard views on the nature of consequence relations. The text includes worked examples and hundreds of exercises, from routine to open problems, making the book with its clear and careful exposition ideal for courses or individual study.
An approach to complexity theory which offers a means of analysing algorithms in terms of their tractability. The authors consider the problem in terms of parameterized languages and taking "k-slices" of the language, thus introducing readers to new classes of algorithms which may be analysed more precisely than was the case until now. The book is as self-contained as possible and includes a great deal of background material. As a result, computer scientists, mathematicians, and graduate students interested in the design and analysis of algorithms will find much of interest.
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.
Poland has played an enormous role in the development of mathematical logic. Leading Polish logicians, like Lesniewski, Lukasiewicz and Tarski, produced several works related to philosophical logic, a field covering different topics relevant to philosophical foundations of logic itself, as well as various individual sciences. This collection presents contemporary Polish work in philosophical logic which in many respects continue the Polish way of doing philosophical logic. This book will be of interest to logicians, mathematicians, philosophers, and linguists.
This book is for researchers in computer science, mathematical logic, and philosophical logic. It shows the state of the art in current investigations of process calculi with mainly two major paradigms at work: linear logic and modal logic. The combination of approaches and pointers for further integration also suggests a grander vision for the field.
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical math fundamental oriented approach that is commonly found in mathematical logic textbooks).
Self-contained, and collating for the first time material that has until now only been published in journals - often in Russian - this book will be of interest to functional analysts, especially those with interests in topological vector spaces, and to algebraists concerned with category theory. The closed graph theorem is one of the corner stones of functional analysis, both as a tool for applications and as an object for research. However, some of the spaces which arise in applications and for which one wants closed graph theorems are not of the type covered by the classical closed graph theorem of Banach or its immediate extensions. To remedy this, mathematicians such as Schwartz and De Wilde (in the West) and Rajkov (in the East) have introduced new ideas which have allowed them to establish closed graph theorems suitable for some of the desired applications. In this book, Professor Smirnov uses category theory to provide a very general framework, including the situations discussed by De Wilde, Rajkov and others. General properties of the spaces involved are discussed and applications are provided in measure theory, global analysis and differential equations.
Suitable for anyone who enjoys logic puzzles Could be used as a companion book for a course on mathematical proof. The puzzles feature the same issues of problem-solving and proof-writing. For anyone who enjoys logical puzzles. For anyone interested in legal reasoning. For anyone who loves the game of baseball.
Alfred Tarski was one of the two giants of the twentieth-century development of logic, along with Kurt Goedel. The four volumes of this collection contain all of Tarski's published papers and abstracts, as well as a comprehensive bibliography. Here will be found many of the works, spanning the period 1921 through 1979, which are the bedrock of contemporary areas of logic, whether in mathematics or philosophy. These areas include the theory of truth in formalized languages, decision methods and undecidable theories, foundations of geometry, set theory, and model theory, algebraic logic, and universal algebra.
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy. On the other hand, this period also witnessed the emergence of a variety of alternative theories of real numbers and corresponding theories of continua, as well as non-Archimedean geometry, non-standard analysis, and a number of important generalizations of the system of real numbers, some of which have been described as arithmetic continua of one type or another. With the exception of E.W. Hobson's essay, which is concerned with the ideas of Cantor and Dedekind and their reception at the turn of the century, the papers in the present collection are either concerned with or are contributions to, the latter groups of studies. All the contributors are outstanding authorities in their respective fields, and the essays, which are directed to historians and philosophers of mathematics as well as to mathematicians who are concerned with the foundations of their subject, are preceded by a lengthy historical introduction.
This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
The twenty-six papers in this volume reflect the wide and still expanding range of Anil Nerode's work. A conference on Logical Methods was held in honor of Nerode's sixtieth birthday (4 June 1992) at the Mathematical Sciences Institute, Cornell University, 1-3 June 1992. Some of the conference papers are here, but others are from students, co-workers and other colleagues. The intention of the conference was to look forward, and to see the directions currently being pursued, in the development of work by, or with, Nerode. Here is a brief summary of the contents of this book. We give a retrospective view of Nerode's work. A number of specific areas are readily discerned: recursive equivalence types, recursive algebra and model theory, the theory of Turing degrees and r.e. sets, polynomial-time computability and computer science. Nerode began with automata theory and has also taken a keen interest in the history of mathematics. All these areas are represented. The one area missing is Nerode's applied mathematical work relating to the environment. Kozen's paper builds on Nerode's early work on automata. Recursive equivalence types are covered by Dekker and Barback, the latter using directly a fundamental metatheorem of Nerode. Recursive algebra is treated by Ge & Richards (group representations). Recursive model theory is the subject of papers by Hird, Moses, and Khoussainov & Dadajanov, while a combinatorial problem in recursive model theory is discussed in Cherlin & Martin's paper. Cenzer presents a paper on recursive dynamics.
Fuzzy Set Theory and Advanced Mathematical Applications contains contributions by many of the leading experts in the field, including coverage of the mathematical foundations of the theory, decision making and systems science, and recent developments in fuzzy neural control. The book supplies a readable, practical toolkit with a clear introduction to fuzzy set theory and its evolution in mathematics and new results on foundations of fuzzy set theory, decision making and systems science, and fuzzy control and neural systems. Each chapter is self-contained, providing up-to-date coverage of its subject. Audience: An important reference work for university students, and researchers and engineers working in both industrial and academic settings.
Fuzzy Sets, Logics and Reasoning about Knowledge reports recent results concerning the genuinely logical aspects of fuzzy sets in relation to algebraic considerations, knowledge representation and commonsense reasoning. It takes a state-of-the-art look at multiple-valued and fuzzy set-based logics, in an artificial intelligence perspective. The papers, all of which are written by leading contributors in their respective fields, are grouped into four sections. The first section presents a panorama of many-valued logics in connection with fuzzy sets. The second explores algebraic foundations, with an emphasis on MV algebras. The third is devoted to approximate reasoning methods and similarity-based reasoning. The fourth explores connections between fuzzy knowledge representation, especially possibilistic logic and prioritized knowledge bases. Readership: Scholars and graduate students in logic, algebra, knowledge representation, and formal aspects of artificial intelligence.
Thisvolume starts with the basicconceptsof FuzzyLogic: the membership function, the intersection and the union of fuzzy sets, fuzzy numbers, and the extension principle underlying the algorithmic operations. Several chapters are devoted to applications of FuzzyLogic in various branches of Operations Research: PERT planning with uncertain activity durations, SMART and the AHP for Multi-Criteria Decision Analysis (MCDA) with vague preferential statements, ELECTRE usingthe ideasof the AHP and SMART, and Multi-Objective Optimization (MOO) with weighted degrees of satisfaction. Finally, earlierstudiesof colour perception illustrate the attemptsto find a physiological basisfor the set-theoretical and the algorithmic operations in Fuzzy Logic. The last chapter also discusses somekey issues in linguistic categorization and the prospectsof FuzzyLogicas a multi-disciplinary research activity. I am greatly indebted to the Department of Mechanical Engineering and Applied Mechanics, College of Engineering, University of Michigan, Ann Arbor, for the splendid opportunity to start the actual work on this book during my sabbatical leavefrom Delft (1993 - 1994); to LAMSADE, Universite de Paris-Dauphine, where many ideas emerged duringtwo winter visits (1989, 1990); to the International Institute for Applied Systems Analysis, Laxenburg, Austria, whereI got further inspiration duringa number of summer visits (1992, 1995, and 1996); and to the NISSAN Foundation in The Netherlands who enabled me to visit several Japanese universities (June 1996). Moreover, I gratefully acknowledge the stimulating supportgiven by many colleagues inthe International Society on Multi-Criteria Decision Making and in the European Working Group "Aide Multicritere Ii la Decision."
This is the first book to present an up-to-date and self-contained account of Algebraic Complexity Theory that is both comprehensive and unified. Requiring of the reader only some basic algebra and offering over 350 exercises, it is well-suited as a textbook for beginners at graduate level. With its extensive bibliography covering about 500 research papers, this text is also an ideal reference book for the professional researcher. The subdivision of the contents into 21 more or less independent chapters enables readers to familiarize themselves quickly with a specific topic, and facilitates the use of this book as a basis for complementary courses in other areas such as computer algebra.
without a properly developed inconsistent calculus based on infinitesimals, then in consistent claims from the history of the calculus might well simply be symptoms of confusion. This is addressed in Chapter 5. It is further argued that mathematics has a certain primacy over logic, in that paraconsistent or relevant logics have to be based on inconsistent mathematics. If the latter turns out to be reasonably rich then paraconsistentism is vindicated; while if inconsistent mathematics has seri ous restriytions then the case for being interested in inconsistency-tolerant logics is weakened. (On such restrictions, see this chapter, section 3. ) It must be conceded that fault-tolerant computer programming (e. g. Chapter 8) finds a substantial and important use for paraconsistent logics, albeit with an epistemological motivation (see this chapter, section 3). But even here it should be noted that if inconsistent mathematics turned out to be functionally impoverished then so would inconsistent databases. 2. Summary In Chapter 2, Meyer's results on relevant arithmetic are set out, and his view that they have a bearing on G8del's incompleteness theorems is discussed. Model theory for nonclassical logics is also set out so as to be able to show that the inconsistency of inconsistent theories can be controlled or limited, but in this book model theory is kept in the background as much as possible. This is then used to study the functional properties of various equational number theories."
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi |
You may like...
Temporal Logic: From Philosophy And…
Klaus Mainzer, Stefania Centrone
Hardcover
R1,985
Discovery Miles 19 850
Mathematics For Computation (M4c)
Marco Benini, Olaf Beyersdorff, …
Hardcover
R3,761
Discovery Miles 37 610
The High School Arithmetic - for Use in…
W. H. Ballard, A. C. McKay, …
Hardcover
R956
Discovery Miles 9 560
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R535
Discovery Miles 5 350
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
(1)
|