![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
The concept of infinity is one of the most important, and at the same time, one of the most mysterious concepts of science. Already in antiquity many philosophers and mathematicians pondered over its contradictory nature. In mathematics, the contradictions connected with infinity intensified after the creation, at the end of the 19th century, of the theory of infinite sets and the subsequent discovery, soon after, of paradoxes in this theory. At the time, many scientists ignored the paradoxes and used set theory extensively in their work, while others subjected set-theoretic methods in mathematics to harsh criticism. The debate intensified when a group of French mathematicians, who wrote under the pseudonym of Nicolas Bourbaki, tried to erect the whole edifice of mathematics on the single notion of a set. Some mathematicians greeted this attempt enthusiastically while others regarded it as an unnecessary formalization, an attempt to tear mathematics away from life-giving practical applications that sustain it. These differences notwithstanding, Bourbaki has had a significant influence on the evolution of mathematics in the twentieth century. In this book we try to tell the reader how the idea of the infinite arose and developed in physics and in mathematics, how the theory of infinite sets was constructed, what paradoxes it has led to, what significant efforts have been made to eliminate the resulting contradictions, and what routes scientists are trying to find that would provide a way out of the many difficulties.
While in classical (abelian) homological algebra additive functors from abelian (or additive) categories to abelian categories are investigated , non- abelian homological algebra deals with non-additive functors and their homological properties , in particular with functors having values in non-abelian categories. Such functors haveimportant applications in algebra, algebraic topology, functional analysis, algebraic geometry and other principal areas of mathematics. To study homological properties of non-additive functors it is necessary to define and investigate their derived functors and satellites. It will be the aim of this book based on the results of researchers of A. Razmadze Mathematical Institute of the Georgian Academy of Sciences devoted to non-abelian homological algebra. The most important considered cases will be functors from arbitrary categories to the category of modules, group valued functors and commutative semigroup valued functors. In Chapter I universal sequences of functors are defined and in- vestigated with respect to (co)presheaves of categories, extending in a natural way the satellites of additive functors to the non-additive case and generalizing the classical relative homological algebra in additive categories to arbitrary categories. Applications are given in the furth- coming chapters. Chapter II is devoted to the non-abelian derived functors of group valued functors with respect to projective classes using projective pseu- dosimplicial resolutions. Their functorial properties (exactness, Milnor exact sequence, relationship with cotriple derived functors, satellites and Grothendieck cohomology, spectral sequence of an epimorphism, degree of an arbitrary functor) are established and applications to ho- mology and cohomology of groups are given.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
Robert A. Rankin, one of the world's foremost authorities on
modular forms and a founding editor of The Ramanujan Journal, died
on January 27, 2001, at the age of 85. Rankin had broad interests
and contributed fundamental papers in a wide variety of areas
within number theory, geometry, analysis, and algebra. To
commemorate Rankin's life and work, the editors have collected
together 25 papers by several eminent mathematicians reflecting
Rankin's extensive range of interests within number theory. Many of
these papers reflect Rankin's primary focus in modular forms. It is
the editors' fervent hope that mathematicians will be stimulated by
these papers and gain a greater appreciation for Rankin's
contributions to mathematics.
The author provides an introduction to automated reasoning, and in particular to resolution theorem proving using the prover OTTER. He presents a new clausal version of von Neumann-Bernays-Goedel set theory, and lists over 400 theorems proved semiautomatically in elementary set theory. He presents a semiautomated proof that the composition of homomorphisms is a homomorphism, thus solving a challenge problem. The author next develops Peano's arithmetic, and gives more than 1200 definitions and theorems in elementary number theory. He gives part of the proof of the fundamental theorem of arithmetic (unique factorization), and gives and OTTER-generated proof of Euler's generalization of Fermat's theorem. Next he develops Tarski's geometry within OTTER. He obtains proofs of most of the challenge problems appearing in the literature, and offers further challenges. He then formalizes the modal logic calculus K4, in order to obtain very high level automated proofs of Loeb's theorem, and of Goedel's two incompleteness theorems. Finally he offers thirty-one unsolved problems in elementary number theory as challenge problems.
We dedicate this volume to Professor Parimala on the occasion of her 60th birthday. It contains a variety of papers related to the themes of her research. Parimala's rst striking result was a counterexample to a quadratic analogue of Serre's conjecture (Bulletin of the American Mathematical Society, 1976). Her in uence has cont- ued through her tenure at the Tata Institute of Fundamental Research in Mumbai (1976-2006),and now her time at Emory University in Atlanta (2005-present). A conference was held from 30 December 2008 to 4 January 2009, at the U- versity of Hyderabad, India, to celebrate Parimala's 60th birthday (see the conf- ence's Web site at http://mathstat.uohyd.ernet.in/conf/quadforms2008). The or- nizing committee consisted of J.-L. Colliot-Thel ' en ' e, Skip Garibaldi, R. Sujatha, and V. Suresh. The present volume is an outcome of this event. We would like to thank all the participants of the conference, the authors who have contributed to this volume, and the referees who carefully examined the s- mitted papers. We would also like to thank Springer-Verlag for readily accepting to publish the volume. In addition, the other three editors of the volume would like to place on record their deep appreciation of Skip Garibaldi's untiring efforts toward the nal publication.
The present volume of the "Handbook of the History of Logic" is
designed to establish 19th century Britain as a substantial force
in logic, developing new ideas, some of which would be overtaken
by, and other that would anticipate, the century's later
capitulation to the mathematization of logic.
This book deals with two important branches of mathematics, namely, logic and set theory. Logic and set theory are closely related and play very crucial roles in the foundation of mathematics, and together produce several results in all of mathematics. The topics of logic and set theory are required in many areas of physical sciences, engineering, and technology. The book offers solved examples and exercises, and provides reasonable details to each topic discussed, for easy understanding. The book is designed for readers from various disciplines where mathematical logic and set theory play a crucial role. The book will be of interested to students and instructors in engineering, mathematics, computer science, and technology.
This book features more than 20 papers that celebrate the work of Hajnal Andreka and Istvan Nemeti. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philosophy of physics and spacetime, and methodology of science. They include such exciting subjects as time travelling in emergent spacetime. The short autobiographies of Hajnal Andreka and Istvan Nemeti at the end of the book describe an adventurous journey from electric engineering and Maxwell's equations to a complex system of computer programs for designing Hungary's electric power system, to exploring and contributing deep results to Tarskian algebraic logic as the deepest core theory of such questions, then on to applications of the results in such exciting new areas as relativity theory in order to rejuvenate logic itself.
The edited volume includes papers in the fields of fuzzy mathematical analysis and advances in computational mathematics. The fields of fuzzy mathematical analysis and advances in computational mathematics can provide valuable solutions to complex problems. They have been applied in multiple areas such as high dimensional data analysis, medical diagnosis, computer vision, hand-written character recognition, pattern recognition, machine intelligence, weather forecasting, network optimization, VLSI design, etc. The volume covers ongoing research in fuzzy and computational mathematical analysis and brings forward its recent applications to important real-world problems in various fields. The book includes selected high-quality papers from the International Conference on Fuzzy Mathematical Analysis and Advances in Computational Mathematics (FMAACM 2020).
This contributed volume collects papers related to the Logic in Question workshop, which has taken place annually at Sorbonne University in Paris since 2011. Each year, the workshop brings together historians, philosophers, mathematicians, linguists, and computer scientists to explore questions related to the nature of logic and how it has developed over the years. As a result, chapter authors provide a thorough, interdisciplinary exploration of topics that have been studied in the workshop. Organized into three sections, the first part of the book focuses on historical questions related to logic, the second explores philosophical questions, and the third section is dedicated to mathematical discussions. Specific topics include: * logic and analogy* Chinese logic* nineteenth century British logic (in particular Boole and Lewis Carroll)* logical diagrams * the place and value of logic in Louis Couturat's philosophical thinking* contributions of logical analysis for mathematics education* the exceptionality of logic* the logical expressive power of natural languages* the unification of mathematics via topos theory Logic in Question will appeal to pure logicians, historians of logic, philosophers, linguists, and other researchers interested in the history of logic, making this volume a unique and valuable contribution to the field.
The capabilities of modern technology are rapidly increasing, spurred on to a large extent by the tremendous advances in communications and computing. Automated vehicles and global wireless connections are some examples of these advances. In order to take advantage of such enhanced capabilities, our need to model and manipulate our knowledge of the geophysical world, using compatible representations, is also rapidly increasing. In response to this one fundamental issue of great concern in modern geographical research is how to most effectively capture the physical world around us in systems like geographical information systems (GIS). Making this task even more challenging is the fact that uncertainty plays a pervasive role in the representation, analysis and use of geospatial information. The types of uncertainty that appear in geospatial information systems are not the just simple randomness of observation, as in weather data, but are manifested in many other forms including imprecision, incompleteness and granularization. Describing the uncertainty of the boundaries of deserts and mountains clearly require different tools than those provided by probability theory. The multiplicity of modalities of uncertainty appearing in GIS requires a variety of formalisms to model these uncertainties. In light of this it is natural that fuzzy set theory has become a topic of intensive interest in many areas of geographical research and applications This volume, Fuzzy Modeling with Spatial Information for Geographic Problems, provides many stimulating examples of advances in geographical research based on approaches using fuzzy sets and related technologies.
This book discusses the theory of triangular norms and surveys several applied fields in which triangular norms play a significant part: probabilistic metric spaces, aggregation operators, many-valued logics, fuzzy logics, sets and control, and non-additive measures together with their corresponding integrals. It includes many graphical illustrations and gives a well-balanced picture of theory and applications. It is for mathematicians, computer scientists, applied computer scientists and engineers.
This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.
Steiner's Problem concerns finding a shortest interconnecting network for a finite set of points in a metric space. A solution must be a tree, which is called a Steiner Minimal Tree (SMT), and may contain vertices different from the points which are to be connected. Steiner's Problem is one of the most famous combinatorial-geometrical problems, but unfortunately it is very difficult in terms of combinatorial structure as well as computational complexity. However, if only a Minimum Spanning Tree (MST) without additional vertices in the interconnecting network is sought, then it is simple to solve. So it is of interest to know what the error is if an MST is constructed instead of an SMT. The worst case for this ratio running over all finite sets is called the Steiner ratio of the space. The book concentrates on investigating the Steiner ratio. The goal is to determine, or at least estimate, the Steiner ratio for many different metric spaces. The author shows that the description of the Steiner ratio contains many questions from geometry, optimization, and graph theory. Audience: Researchers in network design, applied optimization, and design of algorithms.
Harish-Chandra¿s general Plancherel inversion theorem admits a much shorter presentation for spherical functions. Previous expositions have dealt with a general, wide class of Lie groups. This has made access to the subject difficult for outsiders, who may wish to connect some aspects with several if not all other parts of mathematics. In this book, the essential features of Harish-Chandra theory are exhibited on SLn(R), but hundreds of pages of background are replaced by short direct verifications. The material is accessible to graduate students with no background in Lie groups and representation theory.
In this two-volume compilation of articles, leading researchers reevaluate the success of Hilbert's axiomatic method, which not only laid the foundations for our understanding of modern mathematics, but also found applications in physics, computer science and elsewhere. The title takes its name from David Hilbert's seminal talk Axiomatisches Denken, given at a meeting of the Swiss Mathematical Society in Zurich in 1917. This marked the beginning of Hilbert's return to his foundational studies, which ultimately resulted in the establishment of proof theory as a new branch in the emerging field of mathematical logic. Hilbert also used the opportunity to bring Paul Bernays back to Goettingen as his main collaborator in foundational studies in the years to come. The contributions are addressed to mathematical and philosophical logicians, but also to philosophers of science as well as physicists and computer scientists with an interest in foundations. Chapter 8 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Roy T Cook examines the Yablo paradox-a paradoxical, infinite sequence of sentences, each of which entails the falsity of all others later than it in the sequence-with special attention paid to the idea that this paradox provides us with a semantic paradox that involves no circularity. The three main chapters of the book focus, respectively, on three questions that can be (and have been) asked about the Yablo construction. First we have the Characterization Problem, which asks what patterns of sentential reference (circular or not) generate semantic paradoxes. Addressing this problem requires an interesting and fruitful detour through the theory of directed graphs, allowing us to draw interesting connections between philosophical problems and purely mathematical ones. Next is the Circularity Question, which addresses whether or not the Yablo paradox is genuinely non-circular. Answering this question is complicated: although the original formulation of the Yablo paradox is circular, it turns out that it is not circular in any sense that can bear the blame for the paradox. Further, formulations of the paradox using infinitary conjunction provide genuinely non-circular constructions. Finally, Cook turns his attention to the Generalizability Question: can the Yabloesque pattern be used to generate genuinely non-circular variants of other paradoxes, such as epistemic and set-theoretic paradoxes? Cook argues that although there are general constructions-unwindings-that transform circular constructions into Yablo-like sequences, it turns out that these sorts of constructions are not 'well-behaved' when transferred from semantic puzzles to puzzles of other sorts. He concludes with a short discussion of the connections between the Yablo paradox and the Curry paradox.
The book is about strong axioms of infi nity in set theory (also known as large cardinal axioms), and the ongoing search for natural models of these axioms. Assuming the Ultrapower Axiom, a combinatorial principle conjectured to hold in all such natural models, we solve various classical problems in set theory (for example, the Generalized Continuum Hypothesis) and uncover a theory of large cardinals that is much clearer than the one that can be developed using only the standard axioms.
How to draw plausible conclusions from uncertain and conflicting sources of evidence is one of the major intellectual challenges of Artificial Intelligence. It is a prerequisite of the smart technology needed to help humans cope with the information explosion of the modern world. In addition, computational modelling of uncertain reasoning is a key to understanding human rationality. Previous computational accounts of uncertain reasoning have fallen into two camps: purely symbolic and numeric. This book represents a major advance by presenting a unifying framework which unites these opposing camps. The Incidence Calculus can be viewed as both a symbolic and a numeric mechanism. Numeric values are assigned indirectly to evidence via the possible worlds in which that evidence is true. This facilitates purely symbolic reasoning using the possible worlds and numeric reasoning via the probabilities of those possible worlds. Moreover, the indirect assignment solves some difficult technical problems, like the combinat ion of dependent sources of evidcence, which had defeated earlier mechanisms. Weiru Liu generalises the Incidence Calculus and then compares it to a succes sion of earlier computational mechanisms for uncertain reasoning: Dempster-Shafer Theory, Assumption-Based Truth Maintenance, Probabilis tic Logic, Rough Sets, etc. She shows how each of them is represented and interpreted in Incidence Calculus. The consequence is a unified mechanism which includes both symbolic and numeric mechanisms as special cases. It provides a bridge between symbolic and numeric approaches, retaining the advantages of both and overcoming some of their disadvantages."
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
Kurt Godel (1906 - 1978) was the most outstanding logician of the
twentieth century, famous for his hallmark works on the
completeness of logic, the incompleteness of number theory, and the
consistency of the axiom of choice and the continuum hypothesis. He
is also noted for his work on constructivity, the decision problem,
and the foundations of computability theory, as well as for the
strong individuality of his writings on the philosophy of
mathematics. He is less well known for his discovery of unusual
cosmological models for Einstein's equations, in theory permitting
time travel into the past.
This volume deals with problems of modern effective algorithms for the numerical solution of the most frequently occurring elliptic partial differential equations. From the point of view of implementation, attention is paid to algorithms for both classical sequential and parallel computer systems. The first two chapters are devoted to fast algorithms for solving the Poisson and biharmonic equation. In the third chapter, parallel algorithms for model parallel computer systems of the SIMD and MIMD types are described. The implementation aspects of parallel algorithms for solving model elliptic boundary value problems are outlined for systems with matrix, pipeline and multiprocessor parallel computer architectures. A modern and popular multigrid computational principle which offers a good opportunity for a parallel realization is described in the next chapter. More parallel variants based in this idea are presented, whereby methods and assignments strategies for hypercube systems are treated in more detail. The last chapter presents VLSI designs for solving special tridiagonal linear systems of equations arising from finite-difference approximations of elliptic problems. For researchers interested in the development and application of fast algorithms for solving elliptic partial differential equations using advanced computer systems. |
You may like...
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R522
Discovery Miles 5 220
|