![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
In this book we develop powerful techniques based on formal methods for the verification of correctness, consistency and safety properties related to dynamic reconfiguration and communication in complex distributed systems. In particular, static analysis techniques based on types and type systems are an adequate methodology considering their success in guaranteeing not only basic safety properties, but also more sophisticated ones like deadlock or lock freedom in concurrent settings.The main contributions of this book are twofold. i) We design a type system for a concurrent object-oriented calculus to statically ensure consistency of dynamic reconfigurations. ii) We define an encoding of the session pi-calculus, which models communication in distributed systems, into the standard typed pi-calculus. We use this encoding to derive properties like type safety and progress in the session pi-calculus by exploiting the corresponding properties in the standard typed pi-calculus.
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.
Cyber-physical systems (CPSs) combine cyber capabilities, such as computation or communication, with physical capabilities, such as motion or other physical processes. Cars, aircraft, and robots are prime examples, because they move physically in space in a way that is determined by discrete computerized control algorithms. Designing these algorithms is challenging due to their tight coupling with physical behavior, while it is vital that these algorithms be correct because we rely on them for safety-critical tasks. This textbook teaches undergraduate students the core principles behind CPSs. It shows them how to develop models and controls; identify safety specifications and critical properties; reason rigorously about CPS models; leverage multi-dynamical systems compositionality to tame CPS complexity; identify required control constraints; verify CPS models of appropriate scale in logic; and develop an intuition for operational effects. The book is supported with homework exercises, lecture videos, and slides.
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
The book offers a collection of essays on various aspects of Leibniz's scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz's logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz's scientific works through modern mathematical tools, and compare Leibniz's results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz's work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz's researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.
Provides overview of security challenges of IoT and mitigation techniques with a focus on authorization and access control mechanisms Discusses behavioural analysis of threats and attacks using UML base modelling Covers use of Oauth2.0 Protocol and UMA for connecting web applications Includes Role Based Access Control (RBAC), Discretionary Access Control (DAC), Mandatory Access Control (MAC), and Permission Based Access Control (PBAC) Explores how to provide access to third party web applications through resource server by use of secured and reliable Oauth2.0 framework
The aim of this book is to give self-contained proofs of all basic results concerning the infinite-valued proposition al calculus of Lukasiewicz and its algebras, Chang's MV -algebras. This book is for self-study: with the possible exception of Chapter 9 on advanced topics, the only prere- quisite for the reader is some acquaintance with classical propositional logic, and elementary algebra and topology. In this book it is not our aim to give an account of Lukasiewicz's motivations for adding new truth values: readers interested in this topic will find appropriate references in Chapter 10. Also, we shall not explain why Lukasiewicz infinite-valued propositionallogic is a ba- sic ingredient of any logical treatment of imprecise notions: Hajek's book in this series on Trends in Logic contains the most authorita- tive explanations. However, in order to show that MV-algebras stand to infinite-valued logic as boolean algebras stand to two-valued logic, we shall devote Chapter 5 to Ulam's game of Twenty Questions with lies/errors, as a natural context where infinite-valued propositions, con- nectives and inferences are used. While several other semantics for infinite-valued logic are known in the literature-notably Giles' game- theoretic semantics based on subjective probabilities-still the transi- tion from two-valued to many-valued propositonallogic can hardly be modelled by anything simpler than the transformation of the familiar game of Twenty Questions into Ulam game with lies/errors.
While it is well known that the Delian problems are impossible to solve with a straightedge and compass - for example, it is impossible to construct a segment whose length is cube root of 2 with these instruments - the discovery of the Italian mathematician Margherita Beloch Piazzolla in 1934 that one can in fact construct a segment of length cube root of 2 with a single paper fold was completely ignored (till the end of the 1980s). This comes as no surprise, since with few exceptions paper folding was seldom considered as a mathematical practice, let alone as a mathematical procedure of inference or proof that could prompt novel mathematical discoveries. A few questions immediately arise: Why did paper folding become a non-instrument? What caused the marginalisation of this technique? And how was the mathematical knowledge, which was nevertheless transmitted and prompted by paper folding, later treated and conceptualised? Aiming to answer these questions, this volume provides, for the first time, an extensive historical study on the history of folding in mathematics, spanning from the 16th century to the 20th century, and offers a general study on the ways mathematical knowledge is marginalised, disappears, is ignored or becomes obsolete. In doing so, it makes a valuable contribution to the field of history and philosophy of science, particularly the history and philosophy of mathematics and is highly recommended for anyone interested in these topics.
This book examines an abstract mathematical theory, placing special emphasis on results applicable to formal logic. If a theory is especially abstract, it may find a natural home within several of the more familiar branches of mathematics. This is the case with the theory of closure spaces. It might be considered part of topology, lattice theory, universal algebra or, no doubt, one of several other branches of mathematics as well. In our development we have treated it, conceptually and methodologically, as part of topology, partly because we first thought ofthe basic structure involved (closure space), as a generalization of Frechet's concept V-space. V-spaces have been used in some developments of general topology as a generalization of topological space. Indeed, when in the early '50s, one of us started thinking about closure spaces, we thought ofit as the generalization of Frechet V space which comes from not requiring the null set to be CLOSURE SPACES ANDLOGIC XlI closed(as it is in V-spaces). This generalization has an extreme advantage in connection with application to logic, since the most important closure notion in logic, deductive closure, in most cases does not generate a V-space, since the closure of the null set typically consists of the "logical truths" of the logic being examined."
SECTION I In 1972, Donald Davison and Gilbert Hannan wrote in the introduction to the volume Semantics of Natural Language: "The success of linguistics in treating natural languages as formal ~yntactic systems has aroused the interest of a number of linguists in a parallel or related development of semantics. For the most part quite independently, many philosophers and logicians have recently been applying formal semantic methods to structures increasingly like natural languages. While differences in training, method and vocabulary tend to veil the fact, philosophers and linguists are converging, it seems, on a common set of interrelated problems. " Davidson and Harman called for an interdisciplinary dialogue of linguists, philosophers and logicians on the semantics of natural language, and during the last ten years such an enterprise has proved extremely fruitful. Thanks to the cooperative effort in these several fields, the last decade has brought about striking progress in our understanding of the semantics of natural language. This work on semantics has typically paid little attention to psychological aspects of meaning. Thus, psychologists or computer scientists working on artificial intelligence were not invited to join the forces in the influential introduction of Semantics of Natural Language. No doubt it was felt that while psychological aspects of language are important in their own right, they are not relevant to our immediate semantic concerns. In the last few years, several linguists and logicians have come to question the fundamental anti-psychological assumptions underlying their theorizing.
This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, is one of the simplest known algebraic structures yielding a model of weak n-categories. The central result is the equivalence of this model to one of the existing models, due to Tamsamani and further studied by Simpson. This theory has intended applications to homotopy theory, mathematical physics and to long-standing open questions in category theory. As the theory is described in elementary terms and the book is largely self-contained, it is accessible to beginning graduate students and to mathematicians from a wide range of disciplines well beyond higher category theory. The new model makes a transparent connection between higher category theory and homotopy theory, rendering it particularly suitable for category theorists and algebraic topologists. Although the results are complex, readers are guided with an intuitive explanation before each concept is introduced, and with diagrams showing the interconnections between the main ideas and results.
This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a 'non-atomic structure' with an 'atomic, finitely supported structure'. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents. In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of 'cardinality' by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzy subsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of 'infinity' (Dedekind infinity, Mostowski infinity, Kuratowski infinity, Tarski infinity, ascending infinity) are introduced, compared and studied in the new framework. Relevant examples of sets that satisfy some forms of infinity while not satisfying others are provided. Uniformly supported sets are analyzed, and certain surprising properties are presented. Finally, some variations of the finite support requirement are discussed. The book will be of value to researchers in the foundations of set theory, algebra and logic.
Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the social and political problems of their times. What we have sought to document is mathematics' central position in the culture of our day. Space has been made not only for the great mathematicians but also for literary texts, including contributions by two apparent interlopers, Robert Musil and Raymond Queneau, for whom mathematical concepts represented a valuable tool for resolving the struggle between 'soul and precision.'
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna's logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
This monograph is a defence of the Fregean take on logic. The author argues that Freges projects, in logic and philosophy of language, are essentially connected and that the formalist shift produced by the work of Peano, Boole and Schroeder and continued by Hilbert and Tarski is completely alien to Frege's approach in the Begriffsschrift. A central thesis of the book is that judgeable contents, i.e. propositions, are the primary bearers of logical properties, which makes logic embedded in our conceptual system. This approach allows coherent and correct definitions of logical constants, logical consequence, and truth and connects their use to the practices of rational agents in science and everyday life.
This book treats bounded arithmetic and propositional proof complexity from the point of view of computational complexity. The first seven chapters include the necessary logical background for the material and are suitable for a graduate course. Associated with each of many complexity classes are both a two-sorted predicate calculus theory, with induction restricted to concepts in the class, and a propositional proof system. The complexity classes range from AC0 for the weakest theory up to the polynomial hierarchy. Each bounded theorem in a theory translates into a family of (quantified) propositional tautologies with polynomial size proofs in the corresponding proof system. The theory proves the soundness of the associated proof system. The result is a uniform treatment of many systems in the literature, including Buss's theories for the polynomial hierarchy and many disparate systems for complexity classes such as AC0, AC0(m), TC0, NC1, L, NL, NC, and P.
This book has a fundamental relationship to the International Seminar on Fuzzy Set Theory held each September in Linz, Austria. First, this volume is an extended account of the eleventh Seminar of 1989. Second, and more importantly, it is the culmination of the tradition of the preceding ten Seminars. The purpose of the Linz Seminar, since its inception, was and is to foster the development of the mathematical aspects of fuzzy sets. In the earlier years, this was accomplished by bringing together for a week small grou ps of mathematicians in various fields in an intimate, focused environment which promoted much informal, critical discussion in addition to formal presentations. Beginning with the tenth Seminar, the intimate setting was retained, but each Seminar narrowed in theme; and participation was broadened to include both younger scholars within, and established mathematicians outside, the mathematical mainstream of fuzzy sets theory. Most of the material of this book was developed over the years in close association with the Seminar or influenced by what transpired at Linz. For much of the content, it played a crucial role in either stimulating this material or in providing feedback and the necessary screening of ideas. Thus we may fairly say that the book, and the eleventh Seminar to which it is directly related, are in many respects a culmination of the previous Seminars.
The Equation of Knowledge: From Bayes' Rule to a Unified Philosophy of Science introduces readers to the Bayesian approach to science: teasing out the link between probability and knowledge. The author strives to make this book accessible to a very broad audience, suitable for professionals, students, and academics, as well as the enthusiastic amateur scientist/mathematician. This book also shows how Bayesianism sheds new light on nearly all areas of knowledge, from philosophy to mathematics, science and engineering, but also law, politics and everyday decision-making. Bayesian thinking is an important topic for research, which has seen dramatic progress in the recent years, and has a significant role to play in the understanding and development of AI and Machine Learning, among many other things. This book seeks to act as a tool for proselytising the benefits and limits of Bayesianism to a wider public. Features Presents the Bayesian approach as a unifying scientific method for a wide range of topics Suitable for a broad audience, including professionals, students, and academics Provides a more accessible, philosophical introduction to the subject that is offered elsewhere
This book introduces new models based on R-calculus and theories of belief revision for dealing with large and changing data. It extends R-calculus from first-order logic to propositional logic, description logics, modal logic and logic programming, and from minimal change semantics to subset minimal change, pseudo-subformula minimal change and deduction-based minimal change (the last two minimal changes are newly defined). And it proves soundness and completeness theorems with respect to the minimal changes in these logics. To make R-calculus computable, an approximate R-calculus is given which uses finite injury priority method in recursion theory. Moreover, two applications of R-calculus are given to default theory and semantic inheritance networks. This book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners in the field of logic. Also it is very useful for all those who are interested in data, digitization and correctness and consistency of information, in modal logics, non monotonic logics, decidable/undecidable logics, logic programming, description logics, default logics and semantic inheritance networks.
An introductory textbook, Logic for Justice covers, in full detail, the language and semantics of both propositional logic and first-order logic. It motivates the study of those logical systems by drawing on social and political issues. Basically, Logic for Justice frames propositional logic and first-order logic as two theories of the distinction between good arguments and bad arguments. And the book explains why, for the purposes of social justice and political reform, we need theories of that distinction. In addition, Logic for Justice is extremely lucid, thorough, and clear. It explains, and motivates, many different features of the formalism of propositional logic and first-order logic, always connecting those features back to real-world issues. Key Features Connects the study of logic to real-world social and political issues, drawing in students who might not otherwise be attracted to the subject. Offers extremely clear and thorough presentations of technical material, allowing students to learn directly from the book without having to rely on instructor explanations. Carefully explains the value of arguing well throughout one’s life, with several discussions about how to argue and how arguments – when done with care – can be helpful personally. Includes examples that appear throughout the entire book, allowing students to see how the ideas presented in the book build on each other. Provides a large and diverse set of problems for each chapter. Teaches logic by connecting formal languages to natural languages with which students are already familiar, making it much easier for students to learn how logic works.
An introductory textbook, Logic for Justice covers, in full detail, the language and semantics of both propositional logic and first-order logic. It motivates the study of those logical systems by drawing on social and political issues. Basically, Logic for Justice frames propositional logic and first-order logic as two theories of the distinction between good arguments and bad arguments. And the book explains why, for the purposes of social justice and political reform, we need theories of that distinction. In addition, Logic for Justice is extremely lucid, thorough, and clear. It explains, and motivates, many different features of the formalism of propositional logic and first-order logic, always connecting those features back to real-world issues. Key Features Connects the study of logic to real-world social and political issues, drawing in students who might not otherwise be attracted to the subject. Offers extremely clear and thorough presentations of technical material, allowing students to learn directly from the book without having to rely on instructor explanations. Carefully explains the value of arguing well throughout one’s life, with several discussions about how to argue and how arguments – when done with care – can be helpful personally. Includes examples that appear throughout the entire book, allowing students to see how the ideas presented in the book build on each other. Provides a large and diverse set of problems for each chapter. Teaches logic by connecting formal languages to natural languages with which students are already familiar, making it much easier for students to learn how logic works.
This book explores the research of Professor Hilary Putnam, a Harvard professor as well as a leading philosopher, mathematician and computer scientist. It features the work of distinguished scholars in the field as well as a selection of young academics who have studied topics closely connected to Putnam's work. It includes 12 papers that analyze, develop, and constructively criticize this notable professor's research in mathematical logic, the philosophy of logic and the philosophy of mathematics. In addition, it features a short essay presenting reminiscences and anecdotes about Putnam from his friends and colleagues, and also includes an extensive bibliography of his work in mathematics and logic. The book offers readers a comprehensive review of outstanding contributions in logic and mathematics as well as an engaging dialogue between prominent scholars and researchers. It provides those interested in mathematical logic, the philosophy of logic, and the philosophy of mathematics unique insights into the work of Hilary Putnam. |
You may like...
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R522
Discovery Miles 5 220
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
Groups, Invariants, Integrals, and…
Maria Ulan, Stanislav Hronek
Hardcover
R3,328
Discovery Miles 33 280
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
|