Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
The theory of sets, described in the preface to this book as 'Georg Cantor's magnificent theory' was first developed in the 1870s, and was recognised as one of the most important new branches of mathematical science. W. H. Young and his wife Grace Chisholm Young wrote this book, published in 1906, as a 'simple presentation'; but they warn that it is effectively a work in progress: the writing 'has necessarily involved attempts to extend the frontier of existing knowledge, and to fill in gaps which broke the connexion between isolated parts of the subject.' The Young's were a dynamic force in mathematical research: William had been Grace's tutor at Girton College; she was subsequently the first woman to be awarded a Ph. D by the University of G ttingen. Cantor himself said of the book: 'It is a pleasure for me to see with what diligence, skill and success you have worked.'
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Distributed and peer-to-peer (P2P) applications are increasing daily, and cyberattacks are constantly adopting new mechanisms to threaten the security and privacy of users in these Internet of Things (IoT) environments. Blockchain, a decentralized cryptographic-based technology, is a promising element for IoT security in manufacturing, finance, healthcare, supply chain, identity management, e-governance, defence, education, banking, and trading. Blockchain has the potential to secure IoT through repetition, changeless capacity, and encryption. Blockchain for Information Security and Privacy provides essential knowledge of blockchain usage in the mainstream areas of security, trust, and privacy in decentralized domains. This book is a source of technical information regarding blockchain-oriented software and applications. It provides tools to researchers and developers in both computing and software engineering to develop solutions and automated systems that can promote security, trust, and privacy in cyberspace. FEATURES Applying blockchain-based secured data management in confidential cyberdefense applications Securing online voting systems using blockchain Safeguarding electronic healthcare record (EHR) management using blockchain Impacting security and privacy in digital identity management Using blockchain-based security and privacy for smart contracts By providing an overview of blockchain technology application domains in IoT (e.g., vehicle web, power web, cloud internet, and edge computing), this book features side-by-side comparisons of modern methods toward secure and privacy-preserving blockchain technology. It also examines safety objectives, efficiency, limitations, computational complexity, and communication overhead of various applications using blockchain. This book also addresses the combination of blockchain and industrial IoT. It explores novel various-levels of information sharing systems.
The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In this Vol. I the author explains preferential structures and abstract size. In the associated Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics. In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.
* This is a textbook on philosophy of mathematics from the point of view of a mathematician, aimed to attract mathematicians into foundational and philosophical problems in mathematics and help them learn how and to what extent a philosophical view can change the mathematical practice. * It contains up to date and current book available. * The text will appeal to both mathematicians and philosophy departments where Philosophy of Mathematics or Philosophy of Science is taught.
* This is a textbook on philosophy of mathematics from the point of view of a mathematician, aimed to attract mathematicians into foundational and philosophical problems in mathematics and help them learn how and to what extent a philosophical view can change the mathematical practice. * It contains up to date and current book available. * The text will appeal to both mathematicians and philosophy departments where Philosophy of Mathematics or Philosophy of Science is taught.
This book offers a defense against non-classical approaches to the paradoxes. The author argues that, despite appearances, the paradoxes give no reason at all to reject classical logic. In fact, he believes classical solutions fare better than non-classical ones with respect to key tests like Curry's Paradox, a Liar-like paradox that dialetheists are forced to solve in a way totally disjoint from their solution to the Liar. Graham Priest's In Contradiction was the first major work that advocated the use of non-classical approaches. Since then, these views have moved into the philosophical mainstream. Much of this movement is fueled by a widespread sense that these logically heterodox solutions get to the real nub of the issue. They lack the ad hoc feel of many other solutions to the paradoxes. The author believes that it's long past time for a response to these attacks against classical orthodoxy. He presents a non-logically-revisionary solution to the paradoxes. This title offers a literal way of cashing out the disquotation metaphor. While the details of the view are novel, the idea has a pre-history in the relevant literature. The author examines objections in detail. He rejects each in turn and concludes by comparing the virtues of his logically orthodox approach with those of the paraconsistent and paracomplete competition.
This book gathers the proceedings of the conference "Cultures of Mathematics and Logic," held in Guangzhou, China. The event was the third in a series of interdisciplinary, international conferences emphasizing the cultural components of philosophy of mathematics and logic. It brought together researchers from many disciplines whose work sheds new light on the diversity of mathematical and logical cultures and practices. In this context, the cultural diversity can be diachronical (different cultures in different historical periods), geographical (different cultures in different regions), or sociological in nature.
This book addresses a gap in the model-theoretic understanding of valued fields that has, until now, limited the interactions of model theory with geometry. It contains significant developments in both pure and applied model theory. Part I of the book is a study of stably dominated types. These form a subset of the type space of a theory that behaves in many ways like the space of types in a stable theory. This part begins with an introduction to the key ideas of stability theory for stably dominated types. Part II continues with an outline of some classical results in the model theory of valued fields and explores the application of stable domination to algebraically closed valued fields. The research presented here is made accessible to the general model theorist by the inclusion of the introductory sections of each part.
This English translation of the author's original work has been thoroughly revised, expanded and updated. The book covers logical systems known as "type-free" or "self-referential." These traditionally arise from any discussion on logical and semantical paradoxes. This particular volume, however, is not concerned with paradoxes but with the investigation of type-free sytems to show that: (i) there are rich theories of self-application, involving both operations and truth which can serve as foundations for property theory and formal semantics; (ii) these theories provide a new outlook on classical topics, such as inductive definitions and predicative mathematics; (iii) they are particularly promising with regard to applications. Research arising from paradoxes has moved progressively closer to the mainstream of mathematical logic and has become much more prominent in the last twenty years. A number of significant developments, techniques and results have been discovered. Academics, students and researchers will find that the book contains a thorough overview of all relevant research in this field.
Originally published in 1995 Time and Logic examines understanding and application of temporal logic, presented in computational terms. The emphasis in the book is on presenting a broad range of approaches to computational applications. The techniques used will also be applicable in many cases to formalisms beyond temporal logic alone, and it is hoped that adaptation to many different logics of program will be facilitated. Throughout, the authors have kept implementation-orientated solutions in mind. The book begins with an introduction to the basic ideas of temporal logic. Successive chapters examine particular aspects of the temporal theoretical computing domain, relating their applications to familiar areas of research, such as stochastic process theory, automata theory, established proof systems, model checking, relational logic and classical predicate logic. This is an essential addition to the library of all theoretical computer scientists. It is an authoritative work which will meet the needs both of those familiar with the field and newcomers to it.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
The two volumes in this advanced textbook present results, proof methods, and translations of motivational and philosophical considerations to formal constructions. In the associated Vol. I the author explains preferential structures and abstract size. In this Vol. II he presents chapters on theory revision and sums, defeasible inheritance theory, interpolation, neighbourhood semantics and deontic logic, abstract independence, and various aspects of nonmonotonic and other logics. In both volumes the text contains many exercises and some solutions, and the author limits the discussion of motivation and general context throughout, offering this only when it aids understanding of the formal material, in particular to illustrate the path from intuition to formalisation. Together these books are a suitable compendium for graduate students and researchers in the area of computer science and mathematical logic.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
Features Over sixty paper stars, all made without cutting, gluing or decorating using the modular origami technique Hundreds of clear step-by-step instructions show you how, based on the technique of folding a small number of simple units and joining them together as a satisfying puzzle Secrets tips to make new shapes just by varying a few lengths and angles Suitable for teaching and learning art, geometry and mathematics. Teachers will appreciate the practical advice to succeed in using origami for education.
During the past 25 years, set theory has developed in several interesting directions. The most outstanding results cover the application of sophisticated techniques to problems in analysis, topology, infinitary combinatorics and other areas of mathematics. This book contains a selection of contributions, some of which are expository in nature, embracing various aspects of the latest developments. Amongst topics treated are forcing axioms and their applications, combinatorial principles used to construct models, and a variety of other set theoretical tools including inner models, partitions and trees. Audience: This book will be of interest to graduate students and researchers in foundational problems of mathematics.
We humans are collectively driven by a powerful - yet not fully explained - instinct to understand. We would like to see everything established, proven, laid bare. The more important an issue, the more we desire to see it clarified, stripped of all secrets, all shades of gray. What could be more important than to understand the Universe and ourselves as a part of it? To find a window onto our origin and our destiny? This book examines how far our modern cosmological theories - with their sometimes audacious models, such as inflation, cyclic histories, quantum creation, parallel universes - can take us towards answering these questions. Can such theories lead us to ultimate truths, leaving nothing unexplained? Last, but not least, Heller addresses the thorny problem of why and whether we should expect to find theories with all-encompassing explicative power.
Recent applications to biomolecular science and DNA computing have created a new audience for automata theory and formal languages. This is the only introductory book to cover such applications. It begins with a clear and readily understood exposition of the fundamentals that assumes only a background in discrete mathematics. The first five chapters give a gentle but rigorous coverage of basic ideas as well as topics not found in other texts at this level, including codes, retracts and semiretracts. Chapter 6 introduces combinatorics on words and uses it to describe a visually inspired approach to languages. The final chapter explains recently-developed language theory coming from developments in bioscience and DNA computing. With over 350 exercises (for which solutions are available), many examples and illustrations, this text will make an ideal contemporary introduction for students; others, new to the field, will welcome it for self-learning.
This volume presents the main results of the 4th International
Conference on Multivariate Approximation, which was held at
Witten-Bommerholz, September 24-29, 2000. Nineteen selected,
peer-reviewed contributions cover recent topics in constructive
approximation on varieties, approximation by solutions of partial
differential equations, application of Riesz bases and frames,
multiwavelets and subdivision.
Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically.This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as
Already in just a decade of existence, cryptocurrencies have been the world's best-performing financial asset, outperforming stocks, bonds, commodities and currencies. This comprehensive yet concise book will enable the reader to learn about the nuts and bolts of cryptocurrencies, including their history, technology, regulations and economics. Additionally, this book teaches sound investment strategies that already work along with the spectrum of risks and returns. This book provides a plain-language primer for beginners worldwide on how to confidently navigate the rapidly evolving world of cryptocurrencies. Beginning by cutting to the chase, the author lists the common burning questions about cryptocurrency and provides succinct answers. Next, he gives an overview of cryptocurrency's underlying technology: blockchain. He then explores the history of cryptocurrency and why it's attracted so much attention. With that foundation, readers will be ready to understand how to invest in cryptocurrency: how cryptocurrency differs from traditional investments such as stocks, how to decide which cryptocurrency to invest in, how to acquire it, how to send and receive it, along with investment strategies. Additionally, legal issues, social implications, cybersecurity risks and the vocabulary of cryptocurrency are also covered, including Bitcoin and the many alternative cryptocurrencies. Written by a journalist-turned-professor, this book's appeal lies in its succinct, informative and easy-to-understand style. It will be of great interest to anyone looking to further their understanding of what cryptocurrency is, why it's a big deal, how to acquire it, how to send and receive it, and investment strategies.
In this book, trigonometry is presented mainly through the solution of specific problems. The problems are meant to help the reader consolidate their knowledge of the subject. In addition, they serve to motivate and provide context for the concepts, definitions, and results as they are presented. In this way, it enables a more active mastery of the subject, directly linking the results of the theory with their applications. Some historical notes are also embedded in selected chapters.The problems in the book are selected from a variety of disciplines, such as physics, medicine, architecture, and so on. They include solving triangles, trigonometric equations, and their applications. Taken together, the problems cover the entirety of material contained in a standard trigonometry course which is studied in high school and college.We have also added some interesting, in our opinion, entertainment problems. To solve them, no special knowledge is required. While they are not directly related to the subject of the book, they reflect its spirit and contribute to a more lighthearted reading of the material.
The starting point for this monograph is the previously unknown connection between the Continuum Hypothesis and the saturation of the non-stationary ideal on 1; and the principle result of this monograph is the identification of a canonical model in which the Continuum Hypothesis is false. This is the first example of such a model and moreover the model can be characterized in terms of maximality principles concerning the universal-existential theory of all sets of countable ordinals. This model is arguably the long sought goal of the study of forcing axioms and iterated forcing but is obtained by completely different methods, for example no theory of iterated forcing whatsoever is required. The construction of the model reveals a powerful technique for obtaining independence results regarding the combinatorics of the continuum, yielding a number of results which have yet to be obtained by any other method. This monograph is directed to researchers and advanced graduate students in Set Theory. The second edition is updated to take into account some of the developments in the decade since the first edition appeared, this includes a revised discussion of -logic and related matters. |
You may like...
Primary Maths for Scotland Textbook 2A…
Craig Lowther, Antoinette Irwin, …
Paperback
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R535
Discovery Miles 5 350
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R484
Discovery Miles 4 840
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
(1)
|