![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Exploring the Infinite addresses the trend toward a combined transition course and introduction to analysis course. It guides the reader through the processes of abstraction and log- ical argumentation, to make the transition from student of mathematics to practitioner of mathematics. This requires more than knowledge of the definitions of mathematical structures, elementary logic, and standard proof techniques. The student focused on only these will develop little more than the ability to identify a number of proof templates and to apply them in predictable ways to standard problems. This book aims to do something more; it aims to help readers learn to explore mathematical situations, to make conjectures, and only then to apply methods of proof. Practitioners of mathematics must do all of these things. The chapters of this text are divided into two parts. Part I serves as an introduction to proof and abstract mathematics and aims to prepare the reader for advanced course work in all areas of mathematics. It thus includes all the standard material from a transition to proof" course. Part II constitutes an introduction to the basic concepts of analysis, including limits of sequences of real numbers and of functions, infinite series, the structure of the real line, and continuous functions. Features Two part text for the combined transition and analysis course New approach focuses on exploration and creative thought Emphasizes the limit and sequences Introduces programming skills to explore concepts in analysis Emphasis in on developing mathematical thought Exploration problems expand more traditional exercise sets
Combinatory logic started as a programme in the foundation of mathematics and in an historical context at a time when such endeavours attracted the most gifted among the mathematicians. This small volume arose under quite differ ent circumstances, namely within the context of reworking the mathematical foundations of computer science. I have been very lucky in finding gifted students who agreed to work with me and chose, for their Ph. D. theses, subjects that arose from my own attempts 1 to create a coherent mathematical view of these foundations. The result of this collaborative work is presented here in the hope that it does justice to the individual contributor and that the reader has a chance of judging the work as a whole. E. Engeler ETH Zurich, April 1994 lCollected in Chapter III, An Algebraization of Algorithmics, in Algorithmic Properties of Structures, Selected Papers of Erwin Engeler, World Scientific PubJ. Co., Singapore, 1993, pp. 183-257. I Historical and Philosophical Background Erwin Engeler In the fall of 1928 a young American turned up at the Mathematical Institute of Gottingen, a mecca of mathematicians at the time; he was a young man with a dream and his name was H. B. Curry. He felt that he had the tools in hand with which to solve the problem of foundations of mathematics mice and for all. His was an approach that came to be called "formalist" and embodied that later became known as Combinatory Logic."
Raymond Smullyan presents a bombshell puzzle so startling that it seems incredible that there could be any solution at all! But there is indeed a solution - moreover, one that requires a chain of lesser puzzles to be solved first. The reader is thus taken on a journey through a maze of subsidiary problems that has all the earmarks of an entertaining detective story.This book leads the unwary reader into deep logical waters through seductively entertaining logic puzzles. One example is Boolean algebra with such weird looking equations as 1+1=0 - a subject which today plays a vital role, not only in mathematical systems, but also in computer science and artificial intelligence.
A general class of powerful and flexible modeling techniques, spline smoothing has attracted a great deal of research attention in recent years and has been widely used in many application areas, from medicine to economics. Smoothing Splines: Methods and Applications covers basic smoothing spline models, including polynomial, periodic, spherical, thin-plate, L-, and partial splines, as well as more advanced models, such as smoothing spline ANOVA, extended and generalized smoothing spline ANOVA, vector spline, nonparametric nonlinear regression, semiparametric regression, and semiparametric mixed-effects models. It also presents methods for model selection and inference. The book provides unified frameworks for estimation, inference, and software implementation by using the general forms of nonparametric/semiparametric, linear/nonlinear, and fixed/mixed smoothing spline models. The theory of reproducing kernel Hilbert space (RKHS) is used to present various smoothing spline models in a unified fashion. Although this approach can be technical and difficult, the author makes the advanced smoothing spline methodology based on RKHS accessible to practitioners and students. He offers a gentle introduction to RKHS, keeps theory at a minimum level, and explains how RKHS can be used to construct spline models. Smoothing Splines offers a balanced mix of methodology, computation, implementation, software, and applications. It uses R to perform all data analyses and includes a host of real data examples from astronomy, economics, medicine, and meteorology. The codes for all examples, along with related developments, can be found on the book's web page.
This comprehensive text shows how various notions of logic can be viewed as notions of universal algebra providing more advanced concepts for those who have an introductory knowledge of algebraic logic, as well as those wishing to delve into more theoretical aspects.
The arrangement of nonzero entries of a matrix, described by the graph of the matrix, limits the possible geometric multiplicities of the eigenvalues, which are far more limited by this information than algebraic multiplicities or the numerical values of the eigenvalues. This book gives a unified development of how the graph of a symmetric matrix influences the possible multiplicities of its eigenvalues. While the theory is richest in cases where the graph is a tree, work on eigenvalues, multiplicities and graphs has provided the opportunity to identify which ideas have analogs for non-trees, and those for which trees are essential. It gathers and organizes the fundamental ideas to allow students and researchers to easily access and investigate the many interesting questions in the subject.
Some of our earliest experiences of the conclusive force of an argument come from school mathematics: faced with a mathematical proof, we cannot deny the conclusion once the premises have been accepted. Behind such arguments lies a more general pattern of 'demonstrative arguments' that is studied in the science of logic. Logical reasoning is applied at all levels, from everyday life to advanced sciences, and a remarkable level of complexity is achieved in everyday logical reasoning, even if the principles behind it remain intuitive. Jan von Plato provides an accessible but rigorous introduction to an important aspect of contemporary logic: its deductive machinery. He shows that when the forms of logical reasoning are analysed, it turns out that a limited set of first principles can represent any logical argument. His book will be valuable for students of logic, mathematics and computer science.
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment $\mathsf{R}$ is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the $\mathsf{R}$ code has been updated throughout to take advantage of new $\mathsf{R}$ packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Unique selling point: * Industry standard book for merchants, banks, and consulting firms looking to learn more about PCI DSS compliance. Core audience: * Retailers (both physical and electronic), firms who handle credit or debit cards (such as merchant banks and processors), and firms who deliver PCI DSS products and services. Place in the market: * Currently there are no PCI DSS 4.0 books
Relational mathematics is to operations research and informatics what numerical mathematics is to engineering: it is intended to help modelling, reasoning, and computing. Its applications are therefore diverse, ranging from psychology, linguistics, decision aid, and ranking to machine learning and spatial reasoning. Although many developments have been made in recent years, they have rarely been shared amongst this broad community of researchers. This comprehensive 2010 overview begins with an easy introduction to the topic, assuming a minimum of prerequisites; but it is nevertheless theoretically sound and up to date. It is suitable for applied scientists, explaining all the necessary mathematics from scratch using a multitude of visualised examples, via matrices and graphs. It ends with tangible results on the research level. The author illustrates the theory and demonstrates practical tasks in operations research, social sciences and the humanities.
This book seamlessly connects the topics of Industry 4.0 and cyber security. It discusses the risks and solutions of using cyber security techniques for Industry 4.0. Cyber Security and Operations Management for Industry 4.0 covers the cyber security risks involved in the integration of Industry 4.0 into businesses and highlights the issues and solutions. The book offers the latest theoretical and practical research in the management of cyber security issues common in Industry 4.0 and also discusses the ethical and legal perspectives of incorporating cyber security techniques and applications into the day-to-day functions of an organization. Industrial management topics related to smart factories, operations research, and value chains are also discussed. This book is ideal for industry professionals, researchers, and those in academia who are interested in learning more about how cyber security and Industry 4.0 are related and can work together.
Fuzzy theory is an interesting name for a method that has been highly effective in a wide variety of significant, real-world applications. A few examples make this readily apparent. As the result of a faulty design the method of computer-programmed trading, the biggest stock market crash in history was triggered by a small fraction of a percent change in the interest rate in a Western European country. A fuzzy theory ap proach would have weighed a number of relevant variables and the ranges of values for each of these variables. Another example, which is rather simple but pervasive, is that of an electronic thermostat that turns on heat or air conditioning at a specific temperature setting. In fact, actual comfort level involves other variables such as humidity and the location of the sun with respect to windows in a home, among others. Because of its great applied significance, fuzzy theory has generated widespread activity internationally. In fact, institutions devoted to research in this area have come into being. As the above examples suggest, Fuzzy Systems Theory is of fundamen tal importance for the analysis and design of a wide variety of dynamic systems. This clearly manifests the fundamental importance of time con siderations in the Fuzzy Systems design approach in dynamic systems. This textbook by Prof. Dr. Jernej Virant provides what is evidently a uniquely significant and comprehensive treatment of this subject on the international scene."
Graph theory meets number theory in this stimulating book. Ihara zeta functions of finite graphs are reciprocals of polynomials, sometimes in several variables. Analogies abound with number-theoretic functions such as Riemann/Dedekind zeta functions. For example, there is a Riemann hypothesis (which may be false) and prime number theorem for graphs. Explicit constructions of graph coverings use Galois theory to generalize Cayley and Schreier graphs. Then non-isomorphic simple graphs with the same zeta are produced, showing you cannot hear the shape of a graph. The spectra of matrices such as the adjacency and edge adjacency matrices of a graph are essential to the plot of this book, which makes connections with quantum chaos and random matrix theory, plus expander/Ramanujan graphs of interest in computer science. Created for beginning graduate students, the book will also appeal to researchers. Many well-chosen illustrations and exercises, both theoretical and computer-based, are included throughout.
This book presents a unifying framework for using priority arguments to prove theorems in computability. Priority arguments provide the most powerful theorem-proving technique in the field, but most of the applications of this technique are ad hoc, masking the unifying principles used in the proofs. The proposed framework presented isolates many of these unifying combinatorial principles and uses them to give shorter and easier-to-follow proofs of computability-theoretic theorems. Standard theorems of priority levels 1, 2, and 3 are chosen to demonstrate the framework's use, with all proofs following the same pattern. The last section features a new example requiring priority at all finite levels. The book will serve as a resource and reference for researchers in logic and computability, helping them to prove theorems in a shorter and more transparent manner.
Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Goedel's completeness theorem. A sneak peek to Goedel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.
Combinatorics and Number Theory of Counting Sequences is an introduction to the theory of finite set partitions and to the enumeration of cycle decompositions of permutations. The presentation prioritizes elementary enumerative proofs. Therefore, parts of the book are designed so that even those high school students and teachers who are interested in combinatorics can have the benefit of them. Still, the book collects vast, up-to-date information for many counting sequences (especially, related to set partitions and permutations), so it is a must-have piece for those mathematicians who do research on enumerative combinatorics. In addition, the book contains number theoretical results on counting sequences of set partitions and permutations, so number theorists who would like to see nice applications of their area of interest in combinatorics will enjoy the book, too. Features The Outlook sections at the end of each chapter guide the reader towards topics not covered in the book, and many of the Outlook items point towards new research problems. An extensive bibliography and tables at the end make the book usable as a standard reference. Citations to results which were scattered in the literature now become easy, because huge parts of the book (especially in parts II and III) appear in book form for the first time.
Transition to Real Analysis with Proof provides undergraduate students with an introduction to analysis including an introduction to proof. The text combines the topics covered in a transition course to lead into a first course on analysis. This combined approach allows instructors to teach a single course where two were offered. The text opens with an introduction to basic logic and set theory, setting students up to succeed in the study of analysis. Each section is followed by graduated exercises that both guide and challenge students. The author includes examples and illustrations that appeal to the visual side of analysis. The accessible structure of the book makes it an ideal refence for later years of study or professional work. Combines the author's previous works Elements of Advanced Mathematics with Foundations of Analysis Combines logic, set theory and other elements with a one-semester introduction to analysis. Author is a well-known mathematics educator and researcher Targets a trend to combine two courses into one
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths.
From the reviews: "This is a very interesting book containing material for a comprehensive study of the cyclid homological theory of algebras, cyclic sets and S1-spaces. Lie algebras and algebraic K-theory and an introduction to Connes'work and recent results on the Novikov conjecture. The book requires a knowledge of homological algebra and Lie algebra theory as well as basic technics coming from algebraic topology. The bibliographic comments at the end of each chapter offer good suggestions for further reading and research. The book can be strongly recommended to anybody interested in noncommutative geometry, contemporary algebraic topology and related topics." European Mathematical Society Newsletter In this second edition the authors have added a chapter 13 on MacLane (co)homology.
Many people start the day with physical exercise but few seem to be so concerned with exercising the most human of organs-the brain. This book provides you with entertaining and challenging mental exercises for every week of the year. Whether you are a high school student eager to sharpen your brain, or someone older who would like to retain your mental agility, you will find your brain getting sharper and more agile as you solve the puzzles in this book. Read a few puzzles every week, think about them, solve them, and you will see the results. And on the way to a sharper mind, you will enjoy every step.
Nonlinear systems with stationary sets are important because they cover a lot of practical systems in engineering. Previous analysis has been based on the frequency-domain for this class of systems. However, few results on robustness analysis and controller design for these systems are easily available.This book presents the analysis as well as methods based on the global properties of systems with stationary sets in a unified time-domain and frequency-domain framework. The focus is on multi-input and multi-output systems, compared to previous publications which considered only single-input and single-output systems. The control methods presented in this book will be valuable for research on nonlinear systems with stationary sets.
Science involves descriptions of the world we live in. It also depends on nature exhibiting what we can best describe as a high aLgorithmic content. The theme running through this collection of papers is that of the interaction between descriptions, in the form of formal theories, and the algorithmic content of what is described, namely of the modeLs of those theories. This appears most explicitly here in a number of valuable, and substantial, contributions to what has until recently been known as 'recursive model theory' - an area in which researchers from the former Soviet Union (in particular Novosibirsk) have been pre-eminent. There are also articles concerned with the computability of aspects of familiar mathematical structures, and - a return to the sort of basic underlying questions considered by Alan Turing in the early days of the subject - an article giving a new perspective on computability in the real world. And, of course, there are also articles concerned with the classical theory of computability, including the first widely available survey of work on quasi-reducibility. The contributors, all internationally recognised experts in their fields, have been associated with the three-year INTAS-RFBR Research Project "Com putability and Models" (Project No. 972-139), and most have participated in one or more of the various international workshops (in Novosibirsk, Heidelberg and Almaty) and otherresearch activities of the network."
This book gathers together a colorful set of problems on classical Mathematical Logic, selected from over 30 years of teaching. The initial chapters start with problems from supporting fields, like set theory (ultrafilter constructions), full-information game theory (strategies), automata, and recursion theory (decidability, Kleene's theorems). The work then advances toward propositional logic (compactness and completeness, resolution method), followed by first-order logic, including quantifier elimination and the Ehrenfeucht- Fraisse game; ultraproducts; and examples for axiomatizability and non-axiomatizability. The Arithmetic part covers Robinson's theory, Peano's axiom system, and Goedel's incompleteness theorems. Finally, the book touches universal graphs, tournaments, and the zero-one law in Mathematical Logic. Instructors teaching Mathematical Logic, as well as students who want to understand its concepts and methods, can greatly benefit from this work. The style and topics have been specially chosen so that readers interested in the mathematical content and methodology could follow the problems and prove the main theorems themselves, including Goedel's famous completeness and incompleteness theorems. Examples of applications on axiomatizability and decidability of numerous mathematical theories enrich this volume.
Mathematical Puzzle Tales from Mount Olympus uses fascinating tales from Greek Mythology as the background for introducing mathematics puzzles to the general public. A background in high school mathematics will be ample preparation for using this book, and it should appeal to anyone who enjoys puzzles and recreational mathematics. Features: Combines the arts and science, and emphasizes the fact that mathematics straddles both domains. Great resource for students preparing for mathematics competitions, and the trainers of such students. |
![]() ![]() You may like...
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,602
Discovery Miles 56 020
Fuzzy Systems - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R10,221
Discovery Miles 102 210
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R600
Discovery Miles 6 000
|