![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
A compilation of articles about Intensionality in philosophy, logic, linguistics, and mathematics. The articles approach the concept of Intensionality from different perspectives. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning the areas of philosophy, linguistics, mathematics, and computer science.
Foundations of mathematics is the study of the most basic concepts and logical structure of mathematics, with an eye to the unity of human knowledge. Almost all of the problems studied in this book are motivated by an overriding foundational question: What are the appropriate axioms for mathematics? Through a series of case studies, these axioms are examined to prove particular theorems in core mathematical areas such as algebra, analysis, and topology, focusing on the language of second-order arithmetic, the weakest language rich enough to express and develop the bulk of mathematics. In many cases, if a mathematical theorem is proved from appropriately weak set existence axioms, then the axioms will be logically equivalent to the theorem. Furthermore, only a few specific set existence axioms arise repeatedly in this context, which in turn correspond to classical foundational programs. This is the theme of reverse mathematics, which dominates the first half of the book. The second part focuses on models of these and other subsystems of second-order arithmetic. Additional results are presented in an appendix.
Kurt Gödel is regarded as one of the most outstanding logician of the twentieth century, famous for his work on logic and number theory. This third volume of a comprehensive edition of Godel's works comprises a selection of previously unpublished manuscripts and lectures. It includes introductory notes that provide extensive explanations and historical commentary on each of the papers. This book is accessible to a wide audience without sacrificing historical or scientific accuracy and will be an essential part of the working library of both professionals and students.
This compilation of papers presented at the 2000 European Summer Meeting of the Association for Symbolic Logic marks the centennial anniversary of Hilbert's famous lecture. Held in the same hall at La Sorbonne where Hilbert first presented his famous problems, this meeting carries special significance to the Mathematics and Logic communities. The presentations include tutorials and research articles from some of the world's preeminent logicians. Three long articles are based on tutorials given at the meeting, and present accessible expositions of developing research in three active areas of logic: model theory, computability, and set theory. The eleven subsequent articles cover separate research topics in many areas of mathematical logic, including: aspects of Computer Science, Proof Theory, Set Theory, Model Theory, Computability Theory, and aspects of Philosophy.
Algorithms that control the computational processes relating sensors and actuators are indispensable for robot navigation and the perception of the world in which they move. Therefore, a deep understanding of how algorithms work to achieve this control is essential for the development of efficient and usable robots in a broad field of applications. An interdisciplinary group of scientists gathers every two years to document the progress in algorithmic foundations of robotics. This volume addresses in particular the areas of control theory, computational and differential geometry in robotics, and applications to core problems such as motion planning, navigation, sensor-based planning, and manipulation.
Putting the G into CAGD, the authors provide a much-needed practical and basic introduction to computer-aided geometric design. This book will help readers understand and use the elements of computer-aided geometric design, curves and surfaces, without the mathematical baggage that is necessary only for more advanced work. Though only minimal background in mathematics is needed to understand the bookis concepts, the book covers an amazing array of topics such as Bezier and B-spline curves and their corresponding surfaces, subdivision surfaces, and NURBS (Non-Uniform Rational B-Splines). Also included are techniques such as interpolation and least squares methods.
A compilation of papers presented at the 2001 European Summer Meeting of the Association for Symbolic Logic, Logic Colloquium '01 includes surveys and research articles from some of the world's preeminent logicians. Two long articles are based on tutorials given at the meeting and present accessible expositions of research in two active areas of logic, geometric model theory and descriptive set theory of group actions. The remaining articles cover seperate research topics in many areas of mathematical logic, including applications in Computer Science, Proof Theory, Set Theory, Model Theory, Computability Theory, and aspects of Philosophy. This collection will be of interest not only to specialists in mathematical logic, but also to philosophical logicians, historians of logic, computer scientists, formal linguists and mathematicians in the areas of algebra, abstract analysis and topology. A number of the articles are aimed at non-specialists and serve as good introductions for graduate students.
Logic languages are free from the ambiguities of natural languages, and are therefore specially suited for use in computing. Model theory is the branch of mathematical logic which concerns the relationship between mathematical structures and logic languages, and has become increasingly important in areas such as computing, philosophy and linguistics. As the reasoning process takes place at a very abstract level, model theory applies to a wide variety of structures. It is also possible to define new structures and classify existing ones by establishing links between them. These links can be very useful since they allow us to transfer our knowledge between related structures. This book provides a clear and readable introduction to the subject, and is suitable for both mathematicians and students from outside the subject. It includes some historically relevant information before each major topic is introduced, making it a useful reference for non-experts. The motivation of the subject is constantly explained, and proofs are also explained in detail.
Goedel's Incompleteness Theorems are among the most significant results in the foundation of mathematics. These results have a positive consequence: any system of axioms for mathematics that we recognize as correct can be properly extended by adding as a new axiom a formal statement expressing that the original system is consistent. This suggests that our mathematical knowledge is inexhaustible, an essentially philosophical topic to which this book is devoted. Basic material in predicate logic, set theory and recursion theory is presented, leading to a proof of incompleteness theorems. The inexhaustibility of mathematical knowledge is treated based on the concept of transfinite progressions of theories as conceived by Turing and Feferman. All concepts and results necessary to understand the arguments are introduced as needed, making the presentation self-contained and thorough.
Logic forms the basis of mathematics and is a fundamental part of any mathematics course. This book provides students with a clear and accessible introduction to this important subject, using the concept of model as the main focus and covering a wide area of logic. The chapters of the book cover propositional calculus, boolean algebras, predicate calculus and completelness theorems with answeres to all of the exercises and the end of the volume. This is an ideal introduction to mathematics and logic for the advanced undergraduate student.
This book presents a study on the foundations of a large class of paraconsistent logics from the point of view of the logics of formal inconsistency. It also presents several systems of non-standard logics with paraconsistent features.
This book is a history of artificial intelligence, that audacious effort to duplicate in an artifact what we consider to be our most important property-our intelligence. It is an invitation for anybody with an interest in the future of the human race to participate in the inquiry.
A compilation of papers presented at the 1999 European Summer Meeting of the Association for Symbolic Logic, Logic Colloquium '99 includes surveys and research articles from some of the world's preeminent logicians. Two long articles are based on tutorials given at the meeting and present accessible expositions of current research in two active areas of logic, geometric model theory and descriptive set theory of group actions. The remaining articles cover current research topics in all areas of mathematical logic, including logic in computer science, proof theory, set theory, model theory, computability theory, and philosophy.
Originally published in 1995 Time and Logic examines understanding and application of temporal logic, presented in computational terms. The emphasis in the book is on presenting a broad range of approaches to computational applications. The techniques used will also be applicable in many cases to formalisms beyond temporal logic alone, and it is hoped that adaptation to many different logics of program will be facilitated. Throughout, the authors have kept implementation-orientated solutions in mind. The book begins with an introduction to the basic ideas of temporal logic. Successive chapters examine particular aspects of the temporal theoretical computing domain, relating their applications to familiar areas of research, such as stochastic process theory, automata theory, established proof systems, model checking, relational logic and classical predicate logic. This is an essential addition to the library of all theoretical computer scientists. It is an authoritative work which will meet the needs both of those familiar with the field and newcomers to it.
A revised and expanded advanced-undergraduate/graduate text (first ed., 1978) about optimization algorithms for problems that can be formulated on graphs and networks. This edition provides many new applications and algorithms while maintaining the classic foundations on which contemporary algorithm
Although there are some books dealing with algebraic theory of automata, their contents consist mainly of Krohn-Rhodes theory and related topics. The topics in the present book are rather different. For example, automorphism groups of automata and the partially ordered sets of automata are systematically discussed. Moreover, some operations on languages and special classes of regular languages associated with deterministic and nondeterministic directable automata are dealt with. The book is self-contained and hence does not require any knowledge of automata and formal languages.
Algorithms and Theory of Computation Handbook, Second Edition: Special Topics and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many of the existing chapters, this second edition contains more than 15 new chapters. This edition now covers self-stabilizing and pricing algorithms as well as the theories of privacy and anonymity, databases, computational games, and communication networks. It also discusses computational topology, natural language processing, and grid computing and explores applications in intensity-modulated radiation therapy, voting, DNA research, systems biology, and financial derivatives. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics.
The study of graph structure has advanced in recent years with great strides: finite graphs can be described algebraically, enabling them to be constructed out of more basic elements. Separately the properties of graphs can be studied in a logical language called monadic second-order logic. In this book, these two features of graph structure are brought together for the first time in a presentation that unifies and synthesizes research over the last 25 years. The authors not only provide a thorough description of the theory, but also detail its applications, on the one hand to the construction of graph algorithms, and, on the other to the extension of formal language theory to finite graphs. Consequently the book will be of interest to graduate students and researchers in graph theory, finite model theory, formal language theory, and complexity theory.
In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications. Product forcing, iterated forcing and proper forcing have proved powerful tools when studying the foundations of mathematics, for instance in consistency proofs. The book is based on graduate courses though some results are also included, making the book attractive to set theorists and logicians.
Neutrices and External Numbers: A Flexible Number System introduces a new model of orders of magnitude and of error analysis, with particular emphasis on behaviour under algebraic operations. The model is formulated in terms of scalar neutrices and external numbers, in the form of an extension of the nonstandard set of real numbers. Many illustrative examples are given. The book starts with detailed presentation of the algebraic structure of external numbers, then deals with the generalized Dedekind completeness property, applications in analysis, domains of validity of approximations of solutions of differential equations, particularly singular perturbations. Finally, it describes the family of algebraic laws characterizing the practice of calculations with external numbers. Features Presents scalar neutrices and external numbers, a mathematical model of order of magnitude within the real number system. Outlines complete algebraic rules for the neutrices and external numbers Conducts operational analysis of convergence and integration of functions known up to orders of magnitude Formalises a calculus of error propagation, covariant with algebraic operations Presents mathematical models of phenomena incorporating their necessary imprecisions, in particular related to the Sorites paradox
Intellectual property owners must continually exploit new ways of reproducing, distributing, and marketing their products. However, the threat of piracy looms as a major problem with digital distribution and storage technologies. Multimedia Watermarking Techniques and Applications covers all current and future trends in the design of modern systems that use watermarking to protect multimedia content. Containing the works of contributing authors who are worldwide experts in the field, this volume is intended for researchers and practitioners, as well as for those who want a broad understanding of multimedia security. In the wake of the explosive growth of digital entertainment and Internet applications, this book is the definitive resource on the subject for scientists, researchers, programmers, engineers, business managers, entrepreneurs, and investors.
Originally published in 1964. This book is concerned with general arguments, by which is meant broadly arguments that rely for their force on the ideas expressed by all, every, any, some, none and other kindred words or phrases. A main object of quantificational logic is to provide methods for evaluating general arguments. To evaluate a general argument by these methods we must first express it in a standard form. Quantificational form is dealt with in chapter one and in part of chapter three; in the remainder of the book an account is given of methods by which arguments when formulated quantificationally may be tested for validity or invalidity. Some attention is also paid to the logic of identity and of definite descriptions. Throughout the book an attempt has been made to give a clear explanation of the concepts involved and the symbols used; in particular a step-by-step and partly mechanical method is developed for translating complicated statements of ordinary discourse into the appropriate quantificational formulae. Some elementary knowledge of truth-functional logic is presupposed.
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
Originally published in 1962. This book gives an account of the concepts and methods of a basic part of logic. In chapter I elementary ideas, including those of truth-functional argument and truth-functional validity, are explained. Chapter II begins with a more comprehensive account of truth-functionality; the leading characteristics of the most important monadic and dyadic truth-functions are described, and the different notations in use are set forth. The main part of the book describes and explains three different methods of testing truth-functional aguments and agument forms for validity: the truthtable method, the deductive method and the method of normal forms; for the benefit mainly of readers who have not acquired in one way or another a general facility in the manipulation of symbols some of the procedures have been described in rather more detail than is common in texts of this kind. In the final chapter the author discusses and rejects the view, based largely on the so called paradoxes of material implication, that truth-functional logic is not applicable in any really important way to arguments of ordinary discourse. |
You may like...
Elementary Lessons in Logic - Deductive…
William Stanley Jevons
Paperback
R569
Discovery Miles 5 690
The New Method Arithmetic [microform]
P (Phineas) McIntosh, C a (Carl Adolph) B 1879 Norman
Hardcover
R921
Discovery Miles 9 210
From Quantum Information to Musical…
Maria Luisa Dalla Chiara, Roberto Giuntini, …
Paperback
R522
Discovery Miles 5 220
Logic from Russell to Church, Volume 5
Dov M. Gabbay, John Woods
Hardcover
R5,271
Discovery Miles 52 710
|