Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Using a unique pedagogical approach, this text introduces mathematical logic by guiding students in implementing the underlying logical concepts and mathematical proofs via Python programming. This approach, tailored to the unique intuitions and strengths of the ever-growing population of programming-savvy students, brings mathematical logic into the comfort zone of these students and provides clarity that can only be achieved by a deep hands-on understanding and the satisfaction of having created working code. While the approach is unique, the text follows the same set of topics typically covered in a one-semester undergraduate course, including propositional logic and first-order predicate logic, culminating in a proof of Goedel's completeness theorem. A sneak peek to Goedel's incompleteness theorem is also provided. The textbook is accompanied by an extensive collection of programming tasks, code skeletons, and unit tests. Familiarity with proofs and basic proficiency in Python is assumed.
For more than 2000 years, Western science has been based on absolutes. Things are black or white, alive or dead, all or nothing. As human beings we know the world is not really like this, that degrees exist between the extremes. But until now science has been unable to accommodate these uncertainties. Fuzzy logic is a scientific revolution that has been waiting to happen for decades – and its central tenets will dramatically change the relationship human beings have with the world. The question is to what degree. In this absorbing, iconoclastic account of the head-spinning possibilities for fuzzy technology, Bart Kosko, fuzzy logic's most famous and combative apostle, urges us to abandon the debilitating binary world and turn to the East, for the future will be 'fuzzy'. ‘One day I learned that science was not true. I do not recall the day but I recall the moment. The God of the twentieth century was no longer God.’ "An exciting alternative form of logic" "'Fuzzy Thinking' is about… a radically different way of structuring our thoughts and experience … that transforms our perception of reality." "'Fuzzy Logic' works… It will become a significant technological force" "Bart Kosko is an extraordinary and polymathic combination of talents" "Bart Kosko is the quintessential scientific cyberpunk – a hip, street-smart prophet of life in the Information Age" "Fuzzy Logic is the cocaine of science"
This text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format - the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and "move" them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book's unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. "Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe." - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival "The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics." - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM)
Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author's advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to scientists and engineers. This new theory, which combines Sinc convolution with the boundary integral equation (IE) approach, makes for exponentially faster convergence to solutions of differential equations. The basis for the approach is the Sinc method of approximating almost every type of operation stemming from calculus via easily computed matrices of very low dimension. The downloadable resources of this handbook contain roughly 450 MATLAB (R) programs corresponding to exponentially convergent numerical algorithms for solving nearly every computational problem of science and engineering. While the book makes Sinc methods accessible to users wanting to bypass the complete theory, it also offers sufficient theoretical details for readers who do want a full working understanding of this exciting area of numerical analysis.
Is mathematics 'entangled' with its various formalisations? Or are the central concepts of mathematics largely insensitive to formalisation, or 'formalism free'? What is the semantic point of view and how is it implemented in foundational practice? Does a given semantic framework always have an implicit syntax? Inspired by what she calls the 'natural language moves' of Goedel and Tarski, Juliette Kennedy considers what roles the concepts of 'entanglement' and 'formalism freeness' play in a range of logical settings, from computability and set theory to model theory and second order logic, to logicality, developing an entirely original philosophy of mathematics along the way. The treatment is historically, logically and set-theoretically rich, and topics such as naturalism and foundations receive their due, but now with a new twist.
Per Martin-Loef's work on the development of constructive type theory has been of huge significance in the fields of logic and the foundations of mathematics. It is also of broader philosophical significance, and has important applications in areas such as computing science and linguistics. This volume draws together contributions from researchers whose work builds on the theory developed by Martin-Loef over the last twenty-five years. As well as celebrating the anniversary of the birth of the subject it covers many of the diverse fields which are now influenced by type theory. It is an invaluable record of areas of current activity, but also contains contributions from N. G. de Bruijn and William Tait, both important figures in the early development of the subject. Also published for the first time is one of Per Martin-Loef's earliest papers.
This book presents the latest research, conducted by leading philosophers and scientists from various fields, on the topic of top-down causation. The chapters combine to form a unique, interdisciplinary perspective, drawing upon George Ellis's extensive research and novel perspectives on topics including downwards causation, weak and strong emergence, mental causation, biological relativity, effective field theory and levels in nature. The collection also serves as a Festschrift in honour of George Ellis' 80th birthday. The extensive and interdisciplinary scope of this book makes it vital reading for anyone interested in the work of George Ellis and current research on the topics of causation and emergence.
This is the second of two volumes by Professor Cherlin presenting the state of the art in the classification of homogeneous structures in binary languages and related problems in the intersection of model theory and combinatorics. Researchers and graduate students in the area will find in these volumes many far-reaching results and interesting new research directions to pursue. This volume continues the analysis of the first volume to 3-multi-graphs and 3-multi-tournaments, expansions of graphs and tournaments by the addition of a further binary relation. The opening chapter provides an overview of the volume, outlining the relevant results and conjectures. The author applies and extends the results of Volume I to obtain a detailed catalogue of such structures and a second classification conjecture. The book ends with an appendix exploring recent advances and open problems in the theory of homogeneous structures and related subjects.
This exploration of a selection of fundamental topics and general purpose tools provides a roadmap to undergraduate students who yearn for a deeper dive into many of the concepts and ideas they have been encountering in their classes whether their motivation is pure curiosity or preparation for graduate studies. The topics intersect a wide range of areas encompassing both pure and applied mathematics. The emphasis and style of the book are motivated by the goal of developing self-reliance and independent mathematical thought. Mathematics requires both intuition and common sense as well as rigorous, formal argumentation. This book attempts to showcase both, simultaneously encouraging readers to develop their own insights and understanding and the adoption of proof writing skills. The most satisfying proofs/arguments are fully rigorous and completely intuitive at the same time.
Algorithms and Theory of Computation Handbook, Second Edition: General Concepts and Techniques provides an up-to-date compendium of fundamental computer science topics and techniques. It also illustrates how the topics and techniques come together to deliver efficient solutions to important practical problems. Along with updating and revising many of the existing chapters, this second edition contains four new chapters that cover external memory and parameterized algorithms as well as computational number theory and algorithmic coding theory. This best-selling handbook continues to help computer professionals and engineers find significant information on various algorithmic topics. The expert contributors clearly define the terminology, present basic results and techniques, and offer a number of current references to the in-depth literature. They also provide a glimpse of the major research issues concerning the relevant topics.
This research text addresses the logical aspects of the visualization of information with papers especially commissioned for this book. The authors explore the logical properties of diagrams, charts, maps, and the like, and their use in problem solving and in teaching basic reasoning skills. As computers make visual presentations of information even more commonplace,it becomes increasingly important for the research community to develop an understanding of such tools.
This book is a collection of contributions honouring Arnon Avron's seminal work on the semantics and proof theory of non-classical logics. It includes presentations of advanced work by some of the most esteemed scholars working on semantic and proof-theoretical aspects of computer science logic. Topics in this book include frameworks for paraconsistent reasoning, foundations of relevance logics, analysis and characterizations of modal logics and fuzzy logics, hypersequent calculi and their properties, non-deterministic semantics, algebraic structures for many-valued logics, and representations of the mechanization of mathematics. Avron's foundational and pioneering contributions have been widely acknowledged and adopted by the scientific community. His research interests are very broad, spanning over proof theory, automated reasoning, non-classical logics, foundations of mathematics, and applications of logic in computer science and artificial intelligence. This is clearly reflected by the diversity of topics discussed in the chapters included in this book, all of which directly relate to Avron's past and present works. This book is of interest to computer scientists and scholars of formal logic.
This book creates a conceptual schema that acts as a correlation between Epistemology and Epistemic Logic. It connects both fields and offers a proper theoretical foundation for the contemporary developments of Epistemic Logic regarding the dynamics of information. It builds a bridge between the view of Awareness Justification Internalism, and a dynamic approach to Awareness Logic. The book starts with an introduction to the main topics in Epistemic Logic and Epistemology and reviews the disconnection between the two fields. It analyses three core notions representing the basic structure of the conceptual schema: "Epistemic Awareness", "Knowledge" and "Justification". Next, it presents the Explicit Aware Knowledge (EAK) Schema, using a diagram of three ellipses to illustrate the schema, and a formal model based on a neighbourhood-model structure, that shows one concrete application of the EAK-Schema into a logical structure. The book ends by presenting conclusions and final remarks about the uses and applications of the EAK-Schema. It shows that the most important feature of the schema is that it serves both as a theoretical correlate to the dynamic extensions of Awareness Logic, providing it with a philosophical background, and as an abstract conceptual structure for a re-interpretation of Epistemology.
Presents Results from a Very Active Area of Research Exploring an active area of mathematics that studies the complexity of equivalence relations and classification problems, Invariant Descriptive Set Theory presents an introduction to the basic concepts, methods, and results of this theory. It brings together techniques from various areas of mathematics, such as algebra, topology, and logic, which have diverse applications to other fields. After reviewing classical and effective descriptive set theory, the text studies Polish groups and their actions. It then covers Borel reducibility results on Borel, orbit, and general definable equivalence relations. The author also provides proofs for numerous fundamental results, such as the Glimm-Effros dichotomy, the Burgess trichotomy theorem, and the Hjorth turbulence theorem. The next part describes connections with the countable model theory of infinitary logic, along with Scott analysis and the isomorphism relation on natural classes of countable models, such as graphs, trees, and groups. The book concludes with applications to classification problems and many benchmark equivalence relations. By illustrating the relevance of invariant descriptive set theory to other fields of mathematics, this self-contained book encourages readers to further explore this very active area of research.
A significant number of works have set forth, over the past decades, the emphasis laid by seventeenth-century mathematicians and philosophers on motion and kinematic notions in geometry. These works demonstrated the crucial role attributed in this context to genetic definitions, which state the mode of generation of geometrical objects instead of their essential properties. While the growing importance of genetic definitions in sixteenth-century commentaries on Euclid's Elements has been underlined, the place, uses and status of motion in this geometrical tradition has however never been thoroughly and comprehensively studied. This book therefore undertakes to fill a gap in the history of early modern geometry and philosophy of mathematics by investigating the different treatments of motion and genetic definitions by seven major sixteenth-century commentators on Euclid's Elements, from Oronce Fine (1494-1555) to Christoph Clavius (1538-1612), including Jacques Peletier (1517-1582), John Dee (1527-1608/1609) and Henry Billingsley (d. 1606), among others. By investigating the ontological and epistemological conceptions underlying the introduction and uses of kinematic notions in their interpretation of Euclidean geometry, this study displays the richness of the conceptual framework, philosophical and mathematical, inherent to the sixteenth-century Euclidean tradition and shows how it contributed to a more generalised acceptance and promotion of kinematic approaches to geometry in the early modern period.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.
Through revealing photographs and accompanying text, this book offers an enchanting and beautiful glimpse into the inner life of the Institut des Hautes Etudes Scientifiques (IHES). The IHES in France is an institute of advanced research in mathematics and theoretical physics with an interest in epistemology and the history of science. It provides exceptionally gifted scientists with a place where they can devote themselves entirely to their research, free of teaching and administrative constraints, and offers them the opportunity to invite visitors with whom they wish to work.
Praise for the First Edition "...complete, up-to-date coverage of computational complexity theory...the book promises to become the standard reference on computational complexity." -Zentralblatt MATH A thorough revision based on advances in the field of computational complexity and readers feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: * A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science * Additional exercises at varying levels of difficulty to further test comprehension of the presented material * End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research. A thorough revision based on advances in the field of computational complexity and readers feedback, the Second Edition of Theory of Computational Complexity presents updates to the principles and applications essential to understanding modern computational complexity theory. The new edition continues to serve as a comprehensive resource on the use of software and computational approaches for solving algorithmic problems and the related difficulties that can be encountered. Maintaining extensive and detailed coverage, Theory of Computational Complexity, Second Edition, examines the theory and methods behind complexity theory, such as computational models, decision tree complexity, circuit complexity, and probabilistic complexity. The Second Edition also features recent developments on areas such as NP-completeness theory, as well as: A new combinatorial proof of the PCP theorem based on the notion of expander graphs, a research area in the field of computer science Additional exercises at varying levels of difficulty to further test comprehension of the presented material End-of-chapter literature reviews that summarize each topic and offer additional sources for further study Theory of Computational Complexity, Second Edition, is an excellent textbook for courses on computational theory and complexity at the graduate level. The book is also a useful reference for practitioners in the fields of computer science, engineering, and mathematics who utilize state-of-the-art software and computational methods to conduct research.
When John Napier published his invention of logarithms in 1614 he was announcing one of the greatest advances in the history of mathematics, and log tables were used universally until the mid 1970s. With his Rabdologia, an ingenious calculating tool composed of numbered rods which came to be known as 'Napier's Bones', he enabled people in the marketplace to do multiplication sums without knowing any multiplication tables. Perhaps the most extraordinary thing about this most extrordinary man was that his great inventions were made without the stimulus of talking to other mathematicians in mainstream Europe. Working away in comparative isolation in a tower house in Scotland, Napier produced methods of calculation that literally changed lives all over the world. He is the father of the slide-rule and the grandfather of today's calculators. Despite his achievements, he remains curiously uncelebrated, and this absorbing story of his life aims to give John Napier his true status. This new edition has been redesigned in a new format and has a new cover.
This Element takes a deep dive into Goedel's 1931 paper giving the first presentation of the Incompleteness Theorems, opening up completely passages in it that might possibly puzzle the student, such as the mysterious footnote 48a. It considers the main ingredients of Goedel's proof: arithmetization, strong representability, and the Fixed Point Theorem in a layered fashion, returning to their various aspects: semantic, syntactic, computational, philosophical and mathematical, as the topic arises. It samples some of the most important proofs of the Incompleteness Theorems, e.g. due to Kuratowski, Smullyan and Robinson, as well as newer proofs, also of other independent statements, due to H. Friedman, Weiermann and Paris-Harrington. It examines the question whether the incompleteness of e.g. Peano Arithmetic gives immediately the undecidability of the Entscheidungsproblem, as Kripke has recently argued. It considers set-theoretical incompleteness, and finally considers some of the philosophical consequences considered in the literature.
This book lays out the theory of Mordell-Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell-Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell-Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface.Two chapters deal with elliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of Mordell-Weil lattices. Finally, the book turns to the rank problem-one of the key motivations for the introduction of Mordell-Weil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
'Points, questions, stories, and occasional rants introduce the 24 chapters of this engaging volume. With a focus on mathematics and peppered with a scattering of computer science settings, the entries range from lightly humorous to curiously thought-provoking. Each chapter includes sections and sub-sections that illustrate and supplement the point at hand. Most topics are self-contained within each chapter, and a solid high school mathematics background is all that is needed to enjoy the discussions. There certainly is much to enjoy here.'CHOICEEver notice how people sometimes use math words inaccurately? Or how sometimes you instinctively know a math statement is false (or not known)?Each chapter of this book makes a point like those above and then illustrates the point by doing some real mathematics through step-by-step mathematical techniques.This book gives readers valuable information about how mathematics and theoretical computer science work, while teaching them some actual mathematics and computer science through examples and exercises. Much of the mathematics could be understood by a bright high school student. The points made can be understood by anyone with an interest in math, from the bright high school student to a Field's medal winner.
This textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander-Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander-Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book.
This book features more than 20 papers that celebrate the work of Hajnal Andreka and Istvan Nemeti. It illustrates an interaction between developing and applying mathematical logic. The papers offer new results as well as surveys in areas influenced by these two outstanding researchers. They also provide details on the after-life of some of their initiatives. Computer science connects the papers in the first part of the book. The second part concentrates on algebraic logic. It features a range of papers that hint at the intricate many-way connections between logic, algebra, and geometry. The third part explores novel applications of logic in relativity theory, philosophy of logic, philosophy of physics and spacetime, and methodology of science. They include such exciting subjects as time travelling in emergent spacetime. The short autobiographies of Hajnal Andreka and Istvan Nemeti at the end of the book describe an adventurous journey from electric engineering and Maxwell's equations to a complex system of computer programs for designing Hungary's electric power system, to exploring and contributing deep results to Tarskian algebraic logic as the deepest core theory of such questions, then on to applications of the results in such exciting new areas as relativity theory in order to rejuvenate logic itself. |
You may like...
Ordnance: War + Architecture & Space
Gary A. Boyd, Denis Linehan
Hardcover
R4,178
Discovery Miles 41 780
The Routledge Handbook of Architecture…
Nikolina Bobic, Farzaneh Haghighi
Hardcover
R5,616
Discovery Miles 56 160
|