![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
The heart of mathematics is its elegance; the way it all fits together. Unfortunately, its beauty often eludes the vast majority of people who are intimidated by fear of the difficulty of numbers. Mathematical Elegance remedies this. Using hundreds of examples, the author presents a view of the mathematical landscape that is both accessible and fascinating. At a time of concern that American youth are bored by math, there is renewed interest in improving math skills. Mathematical Elegance stimulates students, along with those already experienced in the discipline, to explore some of the unexpected pleasures of quantitative thinking. Invoking mathematical proofs famous for their simplicity and brainteasers that are fun and illuminating, the author leaves readers feeling exuberant--as well as convinced that their IQs have been raised by ten points. A host of anecdotes about well-known mathematicians humanize and provide new insights into their lofty subjects. Recalling such classic works as Lewis Carroll's Introduction to Logic and A Mathematician Reads the Newspaper by John Allen Paulos, Mathematical Elegance will energize and delight a wide audience, ranging from intellectually curious students to the enthusiastic general reader.
This book is concerned with tangent cones, duality formulas, a generalized concept of conjugation, and the notion of maxi-minimizing sequence for a saddle-point problem, and deals more with algorithms in optimization. It focuses on the multiple exchange algorithm in convex programming.
"Handbook of the History of Logic" brings to the development of logic the best in modern techniques of historical and interpretative scholarship. Computational logic was born in the twentieth century and evolved in close symbiosis with the advent of the first electronic computers and the growing importance of computer science, informatics and artificial intelligence. With more than ten thousand people working in research and development of logic and logic-related methods, with several dozen international conferences and several times as many workshops addressing the growing richness and diversity of the field, and with the foundational role and importance these methods now assume in mathematics, computer science, artificial intelligence, cognitive science, linguistics, law and many engineering fields where logic-related techniques are used inter alia to state and settle correctness issues, the field has diversified in ways that even the pure logicians working in the early decades of the twentieth century could have hardly anticipated. Logical calculi, which capture an important aspect of human
thought, are now amenable to investigation with mathematical rigour
and computational support and fertilized the early dreams of
mechanised reasoning: Calculemus . The Dartmouth Conference in 1956
- generally considered as the birthplace of artificial intelligence
- raised explicitly the hopes for the new possibilities that the
advent of electronic computing machinery offered: logical
statements could now be executed on a machine with all the
far-reaching consequences that ultimately led to logic programming,
deduction systems for mathematics and engineering, logical design
and verification of computer software and hardware, deductive
databases and software synthesis as well as logical techniques for
analysis in the field of mechanical engineering. This volume covers
some of the main subareas of computational logic and its
applications.
This book is concerned with the optimization problem of maximizing the number of spanning trees of a multigraph. Since a spanning tree is a minimally connected subgraph, graphs and multigraphs having more of these are, in some sense, immune to disconnection by edge failure. We employ a matrix-theoretic approach to the calculation of the number of spanning trees.The authors envision this as a research aid that is of particular interest to graduate students or advanced undergraduate students and researchers in the area of network reliability theory. This would encompass graph theorists of all stripes, including mathematicians, computer scientists, electrical and computer engineers, and operations researchers.
This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions.
This open access book makes a case for extending logic beyond its traditional boundaries, to encompass not only statements but also also questions. The motivations for this extension are examined in detail. It is shown that important notions, including logical answerhood and dependency, emerge as facets of the fundamental notion of entailment once logic is extended to questions, and can therefore be treated with the logician's toolkit, including model-theoretic constructions and proof systems. After motivating the enterprise, the book describes how classical propositional and predicate logic can be made inquisitive-i.e., extended conservatively with questions-and what the resulting logics look like in terms of meta-theoretic properties and proof systems. Finally, the book discusses the tight connections between inquisitive logic and dependence logic.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
Formal verification means having a mathematical model of a system, a language for specifying desired properties of the system in a concise, comprehensible and unambiguous way, and a method of proof to verify that the specified properties are satisfied. When the method of proof is carried out substantially by machine, we speak of automatic verification. Symbolic Model Checking deals with methods of automatic verification as applied to computer hardware. The practical motivation for study in this area is the high and increasing cost of correcting design errors in VLSI technologies. There is a growing demand for design methodologies that can yield correct designs on the first fabrication run. Moreover, design errors that are discovered before fabrication can also be quite costly, in terms of engineering effort required to correct the error, and the resulting impact on development schedules. Aside from pure cost considerations, there is also a need on the theoretical side to provide a sound mathematical basis for the design of computer systems, especially in areas that have received little theoretical attention.
This is an introduction to a flexible tool for use in strategic management within a competitive environment. Based upon ideas from both graph theory and game theory, the method offers several distinct advantages. It can handle a finite number of decision-makers, each of whom controls a number of actions. The graph model can describe and distinguish reversible and irreversible moves. Most importantly, the graph model forms a solid framework upon which solution concepts for describing human behaviour can be defined, assessed and compared This book is accompanied by a computer disk, which is explained and illustrated in the appendix. In addition, the text provides a summary of how to apply the graph model to practical problems Each chapter concludes with a set of problems, which serve to clarify important points and ensure comprehension
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics. The book is suitable for a wide audience and can be used in advanced undergraduate or graduate courses. Computer scientists will discover intriguing connections between sequent calculi and resolution as well as between sequent calculi and typed systems. Those interested in the constructive approach will find formalizations of intuitionistic logic and two calculi for linear logic. Mathematicians and philosophers will welcome the treatment of a range of variations on calculi for classical logic. Philosophical logicians will be interested in the calculi for relevance logics while linguists will appreciate the detailed presentation of Lambek calculi and their extensions.
This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
Model theory investigates mathematical structures by means of formal languages. These so-called first-order languages have proved particularly useful. The text introduces the reader to the model theory of first-order logic, avoiding syntactical issues that are not too relevant to model-theory. In this spirit, the compactness theorem is proved via the algebraically useful ultraproduct technique, rather than via the completeness theorem of first-order logic. This leads fairly quickly to algebraic applications, like Malcev's local theorems (of group theory) and, after a little more preparation, also to Hilbert's Nullstellensatz (of field theory). Steinitz' dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal sets. The final chapter is on the models of the first-order theory of the integers as an abelian group. This material appears here for the first time in a textbook of introductory level, and is used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory. The latter itself is not touched upon. The undergraduate or graduate, is assumed t
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
This book collects 13 papers that explore Wittgenstein's philosophy throughout the different stages of his career. The author writes from the viewpoint of critical rationalism. The tone of his analysis is friendly and appreciative yet critical. Of these papers, seven are on the background to the philosophy of Wittgenstein. Five papers examine different aspects of it: one on the philosophy of young Wittgenstein, one on his transitional period, and the final three on the philosophy of mature Wittgenstein, chiefly his Philosophical Investigations. The last of these papers, which serves as the concluding chapter, concerns the analytical school of philosophy that grew chiefly under its influence. Wittgenstein's posthumous Philosophical Investigations ignores formal languages while retaining the view of metaphysics as meaningless -- declaring that all languages are metaphysics-free. It was very popular in the middle of the twentieth century. Now it is passe. Wittgenstein had hoped to dissolve all philosophical disputes, yet he generated a new kind of dispute. His claim to have improved the philosophy of life is awkward just because he prevented philosophical discussion from the ability to achieve that: he cut the branch on which he was sitting. This, according to the author, is the most serious critique of Wittgenstein.
In the mathematical practice, the Baire category method is a tool for establishing the existence of a rich array of generic structures. However, in mathematics, the Baire category method is also behind a number of fundamental results such as the Open Mapping Theorem or the Banach-Steinhaus Boundedness Principle. This volume brings the Baire category method to another level of sophistication via the internal version of the set-theoretic forcing technique. It is the first systematic account of applications of the higher forcing axioms with the stress on the technique of building forcing notions rather than on the relationship between different forcing axioms or their consistency strengths.
This volume is based on the talks given at the Workshop on Infinity and Truth held at the Institute for Mathematical Sciences, National University of Singapore, from 25 to 29 July 2011. The chapters cover topics in mathematical and philosophical logic that examine various aspects of the foundations of mathematics. The theme of the volume focuses on two basic foundational questions: (i) What is the nature of mathematical truth and how does one resolve questions that are formally unsolvable within the Zermelo-Fraenkel Set Theory with the Axiom of Choice, and (ii) Do the discoveries in mathematics provide evidence favoring one philosophical view over others? These issues are discussed from the vantage point of recent progress in foundational studies.The final chapter features questions proposed by the participants of the Workshop that will drive foundational research. The wide range of topics covered here will be of interest to students, researchers and mathematicians concerned with issues in the foundations of mathematics.
Following developments in modern geometry, logic and physics, many scientists and philosophers in the modern era considered Kanta (TM)s theory of intuition to be obsolete. But this only represents one side of the story concerning Kant, intuition and twentieth century science. Several prominent mathematicians and physicists were convinced that the formal tools of modern logic, set theory and the axiomatic method are not sufficient for providing mathematics and physics with satisfactory foundations. All of Hilbert, GAdel, PoincarA(c), Weyl and Bohr thought that intuition was an indispensable element in describing the foundations of science. They had very different reasons for thinking this, and they had very different accounts of what they called intuition. But they had in common that their views of mathematics and physics were significantly influenced by their readings of Kant. In the present volume, various views of intuition and the axiomatic method are explored, beginning with Kanta (TM)s own approach. By way of these investigations, we hope to understand better the rationale behind Kanta (TM)s theory of intuition, as well as to grasp many facets of the relations between theories of intuition and the axiomatic method, dealing with both their strengths and limitations; in short, the volume covers logical and non-logical, historical and systematic issues in both mathematics and physics.
This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, and often stressing Johan van Benthem's pioneering work in establishing this program. However, this is not a Festschrift, but a rich tapestry for a field with a wealth of strands of its own. The reader will see the state of the art in such topics as information update, belief change, preference, learning over time, and strategic interaction in games. Moreover, no tight boundary has been enforced, and some chapters add more general mathematical or philosophical foundations or links to current trends in computer science.
Thus, very much in line with van Benthem's work over many decades, the volume shows how all these disciplines form a natural unity in the perspective of dynamic logicians (broadly conceived) exploring their new themes today. And at the same time, in doing so, it offers a broader conception of logic with a certain grandeur, moving its horizons beyond the traditional study of consequence relations.
The Asian Logic Conference is the most significant logic meeting outside of North America and Europe, and this volume represents work presented at, and arising from the 12th meeting. It collects a number of interesting papers from experts in the field. It covers many areas of logic.
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.
The subject of mathematics is not something distant, strange, and abstract that you can only learn about and often dislike in school. It is in everyday situations, such as housekeeping, communications, traffic, and weather reports. Taking you on a trip into the world of mathematics, Do I Count? Stories from Mathematics describes in a clear and captivating way the people behind the numbers and the places where mathematics is made. Written by top scientist and engaging storyteller Gunter M. Ziegler and translated by Thomas von Foerster, the book presents mathematics and mathematicians in a manner that you have not previously encountered. It guides you on a scenic tour through the field, pointing out which beds were useful in constructing which theorems and which notebooks list the prizes for solving particular problems. Forgoing esoteric areas, the text relates mathematics to celebrities, history, travel, politics, science and technology, weather, clever puzzles, and the future.
Find out the answers to these and other questions in this entertaining book of stories. You ll see that everyone counts, but no computation is needed." |
You may like...
Historic Manzanita Speedway in Phoenix
Larry Upton, Judy McDonald, …
Hardcover
2D Semiconductor Materials and Devices
Dongzhi Chi, K.E.Johnson Goh, …
Paperback
R3,992
Discovery Miles 39 920
|