![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Computational Thinking (CT) involves fundamental concepts and reasoning, distilled from computer science and other computational sciences, which become powerful general mental tools for solving problems, increasing efficiency, reducing complexity, designing procedures, or interacting with humans and machines. An easy-to-understand guidebook, From Computing to Computational Thinking gives you the tools for understanding and using CT. It does not assume experience or knowledge of programming or of a programming language, but explains concepts and methods for CT with clarity and depth. Successful applications in diverse disciplines have shown the power of CT in problem solving. The book uses puzzles, games, and everyday examples as starting points for discussion and for connecting abstract thinking patterns to real-life situations. It provides an interesting and thought-provoking way to gain general knowledge about modern computing and the concepts and thinking processes underlying modern digital technologies.
The book attempts an elementary exposition of the topics connected with many-valued logics. It gives an account of the constructions being "many-valued" at their origin, i.e. those obtained through intended introduction of logical values next to truth and falsity. To this aim, the matrix method has been chosen as a prevailing manner of presenting the subject. The inquiry throws light upon the profound problem of the criteria of many-valuedness and its classical characterizations. Besides, the reader can find information concerning the main systems of many-valued logic, related axiomatic constructions, and conceptions inspired by many valuedness. The examples of various applications to philosophical logic and some practical domains, as switching theory or Computer Science, helps to see many-valuedness in a wider perspective. Together with a selective bibliography and historical references it makes the work especially useful as a survey and guide in this field of logic.
Mild Cognitive Impairment (MCI) has been identified as an important clinical transition between normal aging and the early stages of Alzheimer's disease (AD). Since treatments for AD are most likely to be most effective early in the course of the disease, MCI has become a topic of great importance and has been investigated in different populations of interest in many countries. This book brings together these differing perspectives on MCI for the first time. This volume provides a comprehensive resource for clinicians, researchers, and students involved in the study, diagnosis, treatment, and rehabilitation of people with MCI. Clinical investigators initially defined mild cognitive impairment (MCI) as a transitional condition between normal aging and the early stages of Alzheimer's disease (AD). Because the prevalence of AD increases with age and very large numbers of older adults are affected worldwide, these clinicians saw a pressing need to identify AD as early as possible. It is at this very early stage in the disease course that treatments to slow the progress and control symptoms are likely to be most effective. Since the first introduction of MCI, research interest has grown exponentially, and the utility of the concept has been investigated from a variety of perspectives in different populations of interest (e.g., clinical samples, volunteers, population-based screening) in many different countries. Much variability in findings has resulted. Although it has been acknowledged that the differences observed between samples may be 'legitimate variations', there has been no attempt to understand what it is we have learned about MCI (i.e., common features and differences) from each of these perspectives. This book brings together information about MCI in different populations from around the world. Mild Cognitive Impairment will be an important resource for any clinician, researcher, or student involved in the study, detection, treatment, and rehabilitation of people with MCI.
This book gives an introduction to theories of computability from a mathematically sophisticated point of view. It treats not only 'the' theory of computability (created by Alan Turing and others in the 1930s), but also a variety of other theories (of Boolean functions, automata and formal languages). These are addressed from the classical perspective of their generation by grammars and from the modern perspective as rational cones. The treatment of the classical theory of computable functions and relations takes the form of a tour through basic recursive function theory, starting with an axiomatic foundation and developing the essential methods in order to survey the most memorable results of the field. This authoritative account by one of the leading lights of the subject will prove exceptionally useful reading for graduate students, and researchers in theoretical computer science and mathematics.
The Asian Logic Conference is part of the series of logic conferences inaugurated in Singapore in 1981. It is normally held every three years and rotates among countries in the Asia-Pacific region. The 11th Asian Logic Conference is held in the National University of Singapore, in honour of Professor Chong Chitat on the occasion of his 60th birthday. The conference is on the broad area of logic, including theoretical computer science. It is considered a major event in this field and is regularly sponsored by the Association of Symbolic Logic. This volume contains papers from this meeting.
All modern books on Einstein emphasize the genius of his relativity theory and the corresponding corrections and extensions of the ancient space-time concept. However, Einstein s opposition to the use of probability in the laws of nature and particularly in the laws of quantum mechanics is criticized and often portrayed as outdated. The author of Einstein Was Right takes a different view and shows that Einstein created a "Trojan horse" ready to unleash forces against the use of probability as a basis for the laws of nature. Einstein warned that the use of probability would, in the final analysis, lead to "spooky" actions and mysterious instantaneous influences at a distance. John Bell pulled Einstein s Trojan horse into the castle of physics. He developed a theory that, together with experimental results of Aspect, Zeilinger, and others, "proves" the existence of quantum non-localities, instantaneous influences. These have indeed the nature of what Einstein labeled as "spooky." The book Einstein Was Right shows that Bell was not aware of the special role that time and space-time play in any rigorous probability theory. As a consequence, his formalism is not general enough to be applied to the Aspect-Zeilinger type of experiments and his conclusions about the existence of instantaneous influences at a distance are incorrect. This fact suggests a world view that is less optimistic about claims that teleportation and influences at a distance could open new horizons and provide the possibility of quantum computing. On the positive side, however, and as compensation, we are assured that the space-time picture of mankind developed over millions of years and perfected by Einstein, is still able to cope with the phenomena that nature presents us on the atomic and sub-atomic level and that the "quantum weirdness" may be explainable and understandable after all. "
This book studies the universal constructions and properties in categories of commutative algebras, bringing out the specific properties that make commutative algebra and algebraic geometry work. Two universal constructions are presented and used here for the first time. The author shows that the concepts and constructions arising in commutative algebra and algebraic geometry are not bound so tightly to the absolute universe of rings, but possess a universality that is independent of them and can be interpreted in various categories of discourse. This brings new flexibility to classical commutative algebra and affords the possibility of extending the domain of validity and the application of the vast number of results obtained in classical commutative algebra. This innovative and original work will interest mathematicians in a range of specialities, including algebraists, categoricians, and algebraic geometers.
This is a mathematically-oriented advanced text in modal logic, a discipline conceived in philosophy and having found applications in mathematics, artificial intelligence, linguistics, and computer science. It presents in a systematic and comprehensive way a wide range of classical and novel methods and results and can be used by a specialist as a reference book.
This penultimate volume contains numerous original, elegant, and surprising results in 1-dimensional cellular automata. Perhaps the most exciting, if not shocking, new result is the discovery that only 82 local rules, out of 256, suffice to predict the time evolution of any of the remaining 174 local rules from an arbitrary initial bit-string configuration. This is contrary to the well-known folklore that 256 local rules are necessary, leading to the new concept of quasi-global equivalence.Another surprising result is the introduction of a simple, yet explicit, infinite bit string called the super string S, which contains all random bit strings of finite length as sub-strings. As an illustration of the mathematical subtlety of this amazing discrete testing signal, the super string S is used to prove mathematically, in a trivial and transparent way, that rule 170 is as chaotic as a coin toss.Yet another unexpected new result, among many others, is the derivation of an explicit basin tree generation formula which provides an analytical relationship between the basin trees of globally-equivalent local rules. This formula allows the symbolic, rather than numerical, generation of the time evolution of any local rule corresponding to any initial bit-string configuration, from one of the 88 globally-equivalent local rules.But perhaps the most provocative idea is the proposal for adopting rule 137, over its three globally-equivalent siblings, including the heretofore more well-known rule 110, as the prototypical universal Turing machine.
This is a first course in propositional modal logic, suitable for mathematicians, computer scientists and philosophers. Emphasis is placed on semantic aspects, in the form of labelled transition structures, rather than on proof theory. The book covers all the basic material - propositional languages, semantics and correspondence results, proof systems and completeness results - as well as some topics not usually covered in a modal logic course. It is written from a mathematical standpoint. To help the reader, the material is covered in short chapters, each concentrating on one topic. These are arranged into five parts, each with a common theme. An important feature of the book is the many exercises, and an extensive set of solutions is provided.
Many systems of quantified modal logic cannot be characterised by Kripke's well-known possible worlds semantic analysis. This book shows how they can be characterised by a more general 'admissible semantics', using models in which there is a restriction on which sets of worlds count as propositions. This requires a new interpretation of quantifiers that takes into account the admissibility of propositions. The author sheds new light on the celebrated Barcan Formula, whose role becomes that of legitimising the Kripkean interpretation of quantification. The theory is worked out for systems with quantifiers ranging over actual objects, and over all possibilia, and for logics with existence and identity predicates and definite descriptions. The final chapter develops a new admissible 'cover semantics' for propositional and quantified relevant logic, adapting ideas from the Kripke Joyal semantics for intuitionistic logic in topos theory. This book is for mathematical or philosophical logicians, computer scientists and linguists.
The nature of truth in mathematics is a problem which has exercised the minds of thinkers from at least the time of the ancient Greeks. The great advances in mathematics and philosophy in the twentieth century--and in particular the proof of Gödel's theorem and the development of the notion of independence in mathematics--have led to new viewpoints on his question. This book is the result of the interaction of a number of outstanding mathematicians and philosophers--including Yurii Manin, Vaughan Jones, and Per Martin-Löf--and their discussions of this problem. It provides an overview of the forefront of current thinking, and is a valuable introduction and reference for researchers in the area.
Praise for William Dunhams Journey Through Genius The Great Theorems of Mathematics "Dunham deftly guides the reader through the verbal and logical intricacies of major mathematical questions and proofs, conveying a splendid sense of how the greatest mathematicians from ancient to modern times presented their arguments." Ivars Peterson Author, The Mathematical Tourist Mathematics and Physics Editor, Science News "It is mathematics presented as a series of works of art; a fascinating lingering over individual examples of ingenuity and insight. It is mathematics by lightning flash." Isaac Asimov "It is a captivating collection of essays of major mathematical achievements brought to life by the personal and historical anecdotes which the author has skillfully woven into the text. This is a book which should find its place on the bookshelf of anyone interested in science and the scientists who create it." R. L. Graham, AT&T Bell Laboratories "Come on a time-machine tour through 2,300 years in which Dunham drops in on some of the greatest mathematicians in history. Almost as if we chat over tea and crumpets, we get to know them and their ideasideas that ring with eternity and that offer glimpses into the often veiled beauty of mathematics and logic. And all the while we marvel, hoping that the tour will not stop." Jearl Walker, Physics Department, Cleveland State University Author of The Flying Circus of Physics
Although sequent calculi constitute an important category of proof systems, they are not as well known as axiomatic and natural deduction systems. Addressing this deficiency, Proof Theory: Sequent Calculi and Related Formalisms presents a comprehensive treatment of sequent calculi, including a wide range of variations. It focuses on sequent calculi for various non-classical logics, from intuitionistic logic to relevance logic, linear logic, and modal logic. In the first chapters, the author emphasizes classical logic and a variety of different sequent calculi for classical and intuitionistic logics. She then presents other non-classical logics and meta-logical results, including decidability results obtained specifically using sequent calculus formalizations of logics. The book is suitable for a wide audience and can be used in advanced undergraduate or graduate courses. Computer scientists will discover intriguing connections between sequent calculi and resolution as well as between sequent calculi and typed systems. Those interested in the constructive approach will find formalizations of intuitionistic logic and two calculi for linear logic. Mathematicians and philosophers will welcome the treatment of a range of variations on calculi for classical logic. Philosophical logicians will be interested in the calculi for relevance logics while linguists will appreciate the detailed presentation of Lambek calculi and their extensions.
This book is concerned with tangent cones, duality formulas, a generalized concept of conjugation, and the notion of maxi-minimizing sequence for a saddle-point problem, and deals more with algorithms in optimization. It focuses on the multiple exchange algorithm in convex programming.
This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models.
The proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Ordinal Definability and Recursion Theory is the third in a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics and discussion of research developments since the publication of the original volumes. Focusing on the subjects of 'HOD and its Local Versions' (Part V) and 'Recursion Theory' (Part VI), each of the two sections is preceded by an introductory survey putting the papers into present context. These four volumes will be a necessary part of the book collection of every set theorist.
Dependence is a common phenomenon, wherever one looks: ecological systems, astronomy, human history, stock markets - but what is the logic of dependence? This book is the first to carry out a systematic logical study of this important concept, giving on the way a precise mathematical treatment of Hintikka's independence friendly logic. Dependence logic adds the concept of dependence to first order logic. Here the syntax and semantics of dependence logic are studied, dependence logic is given an alternative game theoretic semantics, and sharp results about its complexity are proven. This is a textbook suitable for a special course in logic in mathematics, philosophy and computer science departments, and contains over 200 exercises, many of which have a full solution at the end of the book. It is also accessible to general readers, with a basic knowledge of logic, interested in new phenomena in logic.
Set theory is concerned with the foundation of mathematics. In the original formulations of set theory, there were paradoxes contained in the idea of the "set of all sets". Current standard theory (Zermelo-Fraenkel) avoids these paradoxes by restricting the way sets may be formed by other sets, specifically to disallow the possibility of forming the set of all sets. In the 1930s, Quine proposed a different form of set theory in which the set of all sets - the universal set - is allowed, but other restrictions are placed on these axioms. Since then, the steady interest expressed in these non-standard set theories has been boosted by their relevance to computer science. The second edition still concentrates largely on Quine's New Foundations, reflecting the author's belief that this provides the richest and most mysterious of the various systems dealing with set theories with a universal set. Also included is an expanded and completely revised account of the set theories of Church-Oswald and Mitchell, with descriptions of permutation models and extensions that preserve power sets. Dr Foster here presents the reader with a useful and readable introduction for those interested in this topic, and a reference work for those already involved in this area.
Berto's highly readable and lucid guide introduces students and the interested reader to Godel's celebrated "Incompleteness Theorem," and discusses some of the most famous - and infamous - claims arising from Godel's arguments.Offers a clear understanding of this difficult subject by presenting each of the key steps of the "Theorem" in separate chaptersDiscusses interpretations of the "Theorem" made by celebrated contemporary thinkersSheds light on the wider extra-mathematical and philosophical implications of Godel's theoriesWritten in an accessible, non-technical style
A Handbook of Categorical Algebra, in three volumes, is a detailed account of everything a mathematician needs to know about category theory. Each volume is self-contained and is accessible to graduate students with a good background in mathematics. Volume 1 is devoted to general concepts. After introducing the terminology and proving the fundamental results concerning limits, adjoint functors and Kan extensions, the categories of fractions are studied in detail; special consideration is paid to the case of localizations. The remainder of the first volume studies various "refinements" of the fundamental concepts of category and functor.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slide presentations for course lectures. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Arising from a special session held at the 2010 North American Annual Meeting of the Association for Symbolic Logic, this volume is an international cross-disciplinary collaboration with contributions from leading experts exploring connections across their respective fields. Themes range from philosophical examination of the foundations of physics and quantum logic, to exploitations of the methods and structures of operator theory, category theory, and knot theory in an effort to gain insight into the fundamental questions in quantum theory and logic. The book will appeal to researchers and students working in related fields, including logicians, mathematicians, computer scientists, and physicists. A brief introduction provides essential background on quantum mechanics and category theory, which, together with a thematic selection of articles, may also serve as the basic material for a graduate course or seminar.
Following developments in modern geometry, logic and physics, many scientists and philosophers in the modern era considered Kanta (TM)s theory of intuition to be obsolete. But this only represents one side of the story concerning Kant, intuition and twentieth century science. Several prominent mathematicians and physicists were convinced that the formal tools of modern logic, set theory and the axiomatic method are not sufficient for providing mathematics and physics with satisfactory foundations. All of Hilbert, GAdel, PoincarA(c), Weyl and Bohr thought that intuition was an indispensable element in describing the foundations of science. They had very different reasons for thinking this, and they had very different accounts of what they called intuition. But they had in common that their views of mathematics and physics were significantly influenced by their readings of Kant. In the present volume, various views of intuition and the axiomatic method are explored, beginning with Kanta (TM)s own approach. By way of these investigations, we hope to understand better the rationale behind Kanta (TM)s theory of intuition, as well as to grasp many facets of the relations between theories of intuition and the axiomatic method, dealing with both their strengths and limitations; in short, the volume covers logical and non-logical, historical and systematic issues in both mathematics and physics.
For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both theoretical and practical aspects, the book presents: Key mathematical and physical ideas in chaos theory Computer science fundamentals, clearly establishing that chaos properties can be satisfied by finite state machines Concrete applications of chaotic machines in computer security, including pseudorandom number generators, hash functions, digital watermarking, and steganography Concrete applications of chaotic machines in wireless sensor networks, including secure data aggregation and video surveillance Until the authors' recent research, the practical implementation of the mathematical theory of chaos on finite machines raised several issues. This self-contained book illustrates how chaos theory enables the study of computer security problems, such as steganalysis, that otherwise could not be tackled. It also explains how the theory reinforces existing cryptographically secure tools and schemes. |
![]() ![]() You may like...
A Monte Carlo Primer - A Practical…
Stephen A. Dupree, Stanley K. Fraley
Hardcover
R5,656
Discovery Miles 56 560
Advances in Nuclear Physics, v. 21
J.W. Negele, Erich W. Vogt
Hardcover
R2,614
Discovery Miles 26 140
Search for New Physics in tt Final…
Javier Montejo Berlingen
Hardcover
R3,614
Discovery Miles 36 140
|