![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
The starting point for this monograph is the previously unknown connection between the Continuum Hypothesis and the saturation of the non-stationary ideal on 1; and the principle result of this monograph is the identification of a canonical model in which the Continuum Hypothesis is false. This is the first example of such a model and moreover the model can be characterized in terms of maximality principles concerning the universal-existential theory of all sets of countable ordinals. This model is arguably the long sought goal of the study of forcing axioms and iterated forcing but is obtained by completely different methods, for example no theory of iterated forcing whatsoever is required. The construction of the model reveals a powerful technique for obtaining independence results regarding the combinatorics of the continuum, yielding a number of results which have yet to be obtained by any other method. This monograph is directed to researchers and advanced graduate students in Set Theory. The second edition is updated to take into account some of the developments in the decade since the first edition appeared, this includes a revised discussion of -logic and related matters.
‘Another terrific book by Rob Eastaway’ SIMON SINGH ‘A delightfully accessible guide to how to play with numbers’ HANNAH FRY How many cats are there in the world? What's the chance of winning the lottery twice? And just how long does it take to count to a million? Learn how to tackle tricky maths problems with nothing but the back of an envelope, a pencil and some good old-fashioned brain power. Join Rob Eastaway as he takes an entertaining look at how to figure without a calculator. Packed with amusing anecdotes, quizzes, and handy calculation tips for every situation, Maths on the Back of an Envelope is an invaluable introduction to the art of estimation, and a welcome reminder that sometimes our own brain is the best tool we have to deal with numbers.
The Mathematics That Power Our World: How Is It Made? is an attempt to unveil the hidden mathematics behind the functioning of many of the devices we use on a daily basis. For the past years, discussions on the best approach in teaching and learning mathematics have shown how much the world is divided on this issue. The one reality we seem to agree on globally is the fact that our new generation is lacking interest and passion for the subject. One has the impression that the vast majority of young students finishing high school or in their early post-secondary studies are more and more divided into two main groups when it comes to the perception of mathematics. The first group looks at mathematics as a pure academic subject with little connection to the real world. The second group considers mathematics as a set of tools that a computer can be programmed to use and thus, a basic knowledge of the subject is sufficient. This book serves as a middle ground between these two views. Many of the elegant and seemingly theoretical concepts of mathematics are linked to state-of-the-art technologies. The topics of the book are selected carefully to make that link more relevant. They include: digital calculators, basics of data compression and the Huffman coding, the JPEG standard for data compression, the GPS system studied both from the receiver and the satellite ends, image processing and face recognition.This book is a great resource for mathematics educators in high schools, colleges and universities who want to engage their students in advanced readings that go beyond the classroom discussions. It is also a solid foundation for anyone thinking of pursuing a career in science or engineering. All efforts were made so that the exposition of each topic is as clear and self-contained as possible and thus, appealing to anyone trying to broaden his mathematical horizons.
Introduction to the Theory of Optimization in Euclidean Space is intended to provide students with a robust introduction to optimization in Euclidean space, demonstrating the theoretical aspects of the subject whilst also providing clear proofs and applications. Students are taken progressively through the development of the proofs, where they have the occasion to practice tools of differentiation (Chain rule, Taylor formula) for functions of several variables in abstract situations. Throughout this book, students will learn the necessity of referring to important results established in advanced Algebra and Analysis courses. Features Rigorous and practical, offering proofs and applications of theorems Suitable as a textbook for advanced undergraduate students on mathematics or economics courses, or as reference for graduate-level readers Introduces complex principles in a clear, illustrative fashion
Decision Theory An Introduction to Dynamic Programming and
Sequential Decisions John Bather University of Sussex, UK
Mathematical induction, and its use in solving optimization
problems, is a topic of great interest with many applications. It
enables us to study multistage decision problems by proceeding
backwards in time, using a method called dynamic programming. All
the techniques needed to solve the various problems are explained,
and the author's fluent style will leave the reader with an avid
interest in the subject.
This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege's logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand Tarski's and Goedel's work, explaining why the problems they discussed are still unsolved. Finally, the book reports on some of the most influential positions in contemporary philosophy of mathematics, i.e., Maddy's mathematical naturalism and Shapiro's mathematical structuralism. Last but not least, the book introduces Biancani's Aristotelian philosophy of mathematics as this is considered important to understand current philosophical issue in the applications of mathematics. One of the main purposes of the book is to stimulate readers to reconsider the Aristotelian position, which disappeared almost completely from the scene in logic and mathematics in the early twentieth century.
This monograph provides a modern introduction to the theory of quantales. First coined by C.J. Mulvey in 1986, quantales have since developed into a significant topic at the crossroads of algebra and logic, of notable interest to theoretical computer science. This book recasts the subject within the powerful framework of categorical algebra, showcasing its versatility through applications to C*- and MV-algebras, fuzzy sets and automata. With exercises and historical remarks at the end of each chapter, this self-contained book provides readers with a valuable source of references and hints for future research. This book will appeal to researchers across mathematics and computer science with an interest in category theory, lattice theory, and many-valued logic.
College students struggle with the switch from thinking of mathematics as a calculation based subject to a problem solving based subject. This book describes how the introduction to proofs course can be taught in a way that gently introduces students to this new way of thinking. This introduction utilizes recent research in neuroscience regarding how the brain learns best. Rather than jumping right into proofs, students are first taught how to change their mindset about learning, how to persevere through difficult problems, how to work successfully in a group, and how to reflect on their learning. With these tools in place, students then learn logic and problem solving as a further foundation.Next various proof techniques such as direct proofs, proof by contraposition, proof by contradiction, and mathematical induction are introduced. These proof techniques are introduced using the context of number theory. The last chapter uses Calculus as a way for students to apply the proof techniques they have learned.
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. -Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. -Zentralblatt Math (Review of the First Edition) This second edition of A Beginner's Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.
Blockchain is a technology that has attracted the attention of all types of businesses. Cryptocurrency such as Bitcoin has gained the most attention, but now companies are applying Blockchain technology to develop solutions improving traditional applications and securing all types of transactions. Robust and innovative, this technology is being combined with other well-known technologies including Cloud Computing, Big Data, and IoT to revolutionize outcomes in all verticals. Unlike books focused on financial applications, Essential Enterprise Blockchain Concepts and Applications is for researchers and practitioners who are looking for secure, viable, low-cost, and workable applications to solve a broad range of business problems. The book presents research that rethinks how to incorporate Blockchain with existing technology. Chapters cover various applications based on Blockchain technology including: Digital voting Smart contracts Supply chain management Internet security Logistics management Identity management Securing medical devices Asset management Blockchain plays a significant role in providing security for data operations. It defines how trusted transactions can be carried out and addresses Internet vulnerability problems. Blockchain solves the security fault line between AI and IoT in smart systems as well as in other systems using devices connected to each other through public networks. Linear and permanent indexed records are maintained by Blockchain to face the vulnerability issues in a wide variety applications. In addition to applications, the book also covers consensus algorithms and protocols and performance of Blockchain algorithms.
Recursive Functions and Metamathematics deals with problems of the completeness and decidability of theories, using as its main tool the theory of recursive functions. This theory is first introduced and discussed. Then G del's incompleteness theorems are presented, together with generalizations, strengthenings, and the decidability theory. The book also considers the historical and philosophical context of these issues and their philosophical and methodological consequences. Recent results and trends have been included, such as undecidable sentences of mathematical content, reverse mathematics. All the main results are presented in detail. The book is self-contained and presupposes only some knowledge of elementary mathematical logic. There is an extensive bibliography. Readership: Scholars and advanced students of logic, mathematics, philosophy of science.
The two notions of proofs and calculations are intimately related. Proofs can involve calculations, and the algorithm underlying a calculation should be proved correct. This volume explores this key relationship and introduces simple type theory. Starting from the familiar propositional calculus, the author develops the central idea of an applied lambda-calculus. This is illustrated by an account of Gödel's T, a system that codifies number-theoretic function hierarchies. Each of the book's 52 sections ends with a set of exercises, some 200 in total. An appendix contains complete solutions of these exercises.
Originally published in 1973. This book presents a valid mode of reasoning that is different to mathematical probability. This inductive logic is investigated in terms of scientific investigation. The author presents his criteria of adequacy for analysing inductive support for hypotheses and discusses each of these criteria in depth. The chapters cover philosophical problems and paradoxes about experimental support, probability and justifiability, ending with a system of logical syntax of induction. Each section begins with a summary of its contents and there is a glossary of technical terms to aid the reader.
Philosophers of science have produced a variety of definitions for the notion of one sentence, theory or hypothesis being closer to the truth, more verisimilar, or more truthlike than another one. The definitions put forward by philosophers presuppose at least implicitly that the subject matter with which the compared sentences, theories or hypotheses are concerned has been specified,! and the property of closeness to the truth, verisimilitude or truth likeness appearing in such definitions should be understood as closeness to informative truth about that subject matter. This monograph is concerned with a special case of the problem of defining verisimilitude, a case in which this subject matter is of a rather restricted kind. Below, I shall suppose that there is a finite number of interrelated quantities which are used for characterizing the state of some system. Scientists might arrive at different hypotheses concerning the values of such quantities in a variety of ways. There might be various theories that give different predictions (whose informativeness might differ , too) on which combinations of the values of these quantities are possible. Scientists might also have measured all or some of the quantities in question with some accuracy. Finally, they might also have combined these two methods of forming hypotheses on their values by first measuring some of the quantities and then deducing the values of some others from the combination of a theory and the measurement results.
1 2 Harald Atmanspacher and Hans Primas 1 Institute for Frontier Areas of Psychology, Freiburg, Germany, [email protected] 2 ETH Zurich, Switzerland, [email protected] Thenotionofrealityisofsupremesigni?canceforourunderstandingofnature, the world around us, and ourselves. As the history of philosophy shows, it has been under permanent discussion at all times. Traditional discourse about - ality covers the full range from basic metaphysical foundations to operational approaches concerning human kinds of gathering and utilizing knowledge, broadly speaking epistemic approaches. However, no period in time has ex- rienced a number of moves changing and, particularly, restraining traditional concepts of reality that is comparable to the 20th century. Early in the 20th century, quite an in?uential move of such a kind was due to the so-called Copenhagen interpretation of quantum mechanics, laid out essentially by Bohr, Heisenberg, and Pauli in the mid 1920s. Bohr's dictum, quoted by Petersen (1963, p.12), was that "it is wrong to think that the task of physics is to ?nd out how nature is. Physics concerns what we can say about nature." Although this standpoint was not left unopposed - Einstein, Schr] odinger, and others were convinced that it is the task of science to ?nd out about nature itself - epistemic, operational attitudes have set the fashion for many discussions in the philosophy of physics (and of science in general) until today."
This second volume of Research in Computational Topology is a celebration and promotion of research by women in applied and computational topology, containing the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations and research specializations to interact extensively and collectively contribute to new and active research directions in the field. The prestigious senior researchers that signed on to head projects at the workshop are global leaders in the discipline, and two of them were authors on some of the first papers in the field. Some of the featured topics include topological data analysis of power law structure in neural data; a nerve theorem for directional graph covers; topological or homotopical invariants for directed graphs encoding connections among a network of neurons; and the issue of approximation of objects by digital grids, including precise relations between the persistent homology of dual cubical complexes.
Gallery of the Infinite is a mathematician's unique view of the infinitely many sizes of infinity. Written in a playful yet informative style, it introduces important concepts from set theory (including the Cantor Diagonalization Method and the Cantor-Bernstein Theorem) using colorful pictures, with little text and almost no formulas. It requires no specialized background and is suitable for anyone with an interest in the infinite, from advanced middle-school students to inquisitive adults.
Already in just a decade of existence, cryptocurrencies have been the world's best-performing financial asset, outperforming stocks, bonds, commodities and currencies. This comprehensive yet concise book will enable the reader to learn about the nuts and bolts of cryptocurrencies, including their history, technology, regulations and economics. Additionally, this book teaches sound investment strategies that already work along with the spectrum of risks and returns. This book provides a plain-language primer for beginners worldwide on how to confidently navigate the rapidly evolving world of cryptocurrencies. Beginning by cutting to the chase, the author lists the common burning questions about cryptocurrency and provides succinct answers. Next, he gives an overview of cryptocurrency's underlying technology: blockchain. He then explores the history of cryptocurrency and why it's attracted so much attention. With that foundation, readers will be ready to understand how to invest in cryptocurrency: how cryptocurrency differs from traditional investments such as stocks, how to decide which cryptocurrency to invest in, how to acquire it, how to send and receive it, along with investment strategies. Additionally, legal issues, social implications, cybersecurity risks and the vocabulary of cryptocurrency are also covered, including Bitcoin and the many alternative cryptocurrencies. Written by a journalist-turned-professor, this book's appeal lies in its succinct, informative and easy-to-understand style. It will be of great interest to anyone looking to further their understanding of what cryptocurrency is, why it's a big deal, how to acquire it, how to send and receive it, and investment strategies.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
Originally published in 1965. This is a textbook of modern deductive logic, designed for beginners but leading further into the heart of the subject than most other books of the kind. The fields covered are the Propositional Calculus, the more elementary parts of the Predicate Calculus, and Syllogistic Logic treated from a modern point of view. In each of the systems discussed the main emphases are on Decision Procedures and Axiomatisation, and the material is presented with as much formal rigour as is compatible with clarity of exposition. The techniques used are not only described but given a theoretical justification. Proofs of Consistency, Completeness and Independence are set out in detail. The fundamental characteristics of the various systems studies, and their relations to each other are established by meta-logical proofs, which are used freely in all sections of the book. Exercises are appended to most of the chapters, and answers are provided.
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
Originally published in 1962. A clear and simple account of the growth and structure of Mathematical Logic, no earlier knowledge of logic being required. After outlining the four lines of thought that have been its roots - the logic of Aristotle, the idea of all the parts of mathematics as systems to be designed on the same sort of plan as that used by Euclid and his Elements, and the discoveries in algebra and geometry in 1800-1860 - the book goes on to give some of the main ideas and theories of the chief writers on Mathematical Logic: De Morgan, Boole, Jevons, Pierce, Frege, Peano, Whitehead, Russell, Post, Hilbert and Goebel. Written to assist readers who require a general picture of current logic, it will also be a guide for those who will later be going more deeply into the expert details of this field.
Originally published in 1937. A short account of the traditional logic, intended to provide the student with the fundamentals necessary for the specialized study. Suitable for working through individualy, it will provide sufficient knowledge of the elements of the subject to understand materials on more advanced and specialized topics. This is an interesting historic perspective on this area of philosophy and mathematics.
Most coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research |
![]() ![]() You may like...
|