![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Mathematical foundations
Fuzzy Modelling: Paradigms and Practice provides an up-to-date and authoritative compendium of fuzzy models, identification algorithms and applications. Chapters in this book have been written by the leading scholars and researchers in their respective subject areas. Several of these chapters include both theoretical material and applications. The editor of this volume has organized and edited the chapters into a coherent and uniform framework. The objective of this book is to provide researchers and practitioners involved in the development of models for complex systems with an understanding of fuzzy modelling, and an appreciation of what makes these models unique. The chapters are organized into three major parts covering relational models, fuzzy neural networks and rule-based models. The material on relational models includes theory along with a large number of implemented case studies, including some on speech recognition, prediction, and ecological systems. The part on fuzzy neural networks covers some fundamentals, such as neurocomputing, fuzzy neurocomputing, etc., identifies the nature of the relationship that exists between fuzzy systems and neural networks, and includes extensive coverage of their architectures. The last part addresses the main design principles governing the development of rule-based models. Fuzzy Modelling: Paradigms and Practice provides a wealth of specific fuzzy modelling paradigms, algorithms and tools used in systems modelling. Also included is a panoply of case studies from various computer, engineering and science disciplines. This should be a primary reference work for researchers and practitioners developing models of complex systems.
Blockchain is a technology that has attracted the attention of all types of businesses. Cryptocurrency such as Bitcoin has gained the most attention, but now companies are applying Blockchain technology to develop solutions improving traditional applications and securing all types of transactions. Robust and innovative, this technology is being combined with other well-known technologies including Cloud Computing, Big Data, and IoT to revolutionize outcomes in all verticals. Unlike books focused on financial applications, Essential Enterprise Blockchain Concepts and Applications is for researchers and practitioners who are looking for secure, viable, low-cost, and workable applications to solve a broad range of business problems. The book presents research that rethinks how to incorporate Blockchain with existing technology. Chapters cover various applications based on Blockchain technology including: Digital voting Smart contracts Supply chain management Internet security Logistics management Identity management Securing medical devices Asset management Blockchain plays a significant role in providing security for data operations. It defines how trusted transactions can be carried out and addresses Internet vulnerability problems. Blockchain solves the security fault line between AI and IoT in smart systems as well as in other systems using devices connected to each other through public networks. Linear and permanent indexed records are maintained by Blockchain to face the vulnerability issues in a wide variety applications. In addition to applications, the book also covers consensus algorithms and protocols and performance of Blockchain algorithms.
British-Israeli recreational mathematician, communicator and educator, Yossi Elran explores in-depth six of the most ingenious math puzzles, exposing their long 'tails': the stories, trivia, quirks and oddities of their history and, of course, the math and mathematicians behind them. In his unique 'talmudic', associative way, Elran shows the hidden connections between Lewis Carroll's 'Cats and Rats' puzzle and the math of taxi driving, a number pyramid magic trick and Hollywood movie fractals, and even how packing puzzles are related to COVID-19!Elran has a great talent for explaining difficult topics - including quantum mechanics, a topic he relates to some original 'operator' puzzles - making the book very accessible for all audiences.With over 40 additional, original puzzles, and touching on dozens of hot math topics, this is a perfect book for math lovers, educators, kids and adults, and anyone who loves a great read.Yossi Elran is co-author of our bestselling The Paper Puzzle Book, and heads the Innovation Center at the Davidson Institute of Science Education, the educational arm of the world-renowned Weizmann Institute of Science in Israel.
At the turn of the century, Gottlob Frege and Edmund Husserl both participated in the discussion concerning the foundations of logic and mathematics. Since the 1960s, comparisons have been made between Frege's semantic views and Husserl's theory of intentional acts. In quite recent years, new approaches to the two philosophers' views have appeared. This collection of articles opens with the first English translation of Dagfinn Follesdal's early classic on Husserl and Frege of 1958. The book brings together a number of new contributions by well-known authors and gives a survey of recent developments in the field. It shows that Husserl's thought is coming to occupy a central role in the philosophy of logic and mathematics, as well as in the philosophy of mind and cognitive science. The work is primarily meant for philosophers, especially for those working on the problems of language, logic, mathematics, and mind. It can also be used as a textbook in advanced courses in philosophy. "
This second volume of Research in Computational Topology is a celebration and promotion of research by women in applied and computational topology, containing the proceedings of the second workshop for Women in Computational Topology (WinCompTop) as well as papers solicited from the broader WinCompTop community. The multidisciplinary and international WinCompTop workshop provided an exciting and unique opportunity for women in diverse locations and research specializations to interact extensively and collectively contribute to new and active research directions in the field. The prestigious senior researchers that signed on to head projects at the workshop are global leaders in the discipline, and two of them were authors on some of the first papers in the field. Some of the featured topics include topological data analysis of power law structure in neural data; a nerve theorem for directional graph covers; topological or homotopical invariants for directed graphs encoding connections among a network of neurons; and the issue of approximation of objects by digital grids, including precise relations between the persistent homology of dual cubical complexes.
Originally published in 1967. An introduction to the literature of nonstandard logic, in particular to those nonstandard logics known as many-valued logics. Part I expounds and discusses implicational calculi, modal logics and many-valued logics and their associated calculi. Part II considers the detailed development of various many-valued calculi, and some of the important metathereoms which have been proved for them. Applications of the calculi to problems in the philosophy are also surveyed. This work combines criticism with exposition to form a comprehensive but concise survey of the field.
Originally published in 1966. An introduction to current studies of kinds of inference in which validity cannot be determined by ordinary deductive models. In particular, inductive inference, predictive inference, statistical inference, and decision making are examined in some detail. The last chapter discusses the relationship of these forms of inference to philosophical notions of rationality. Special features of the monograph include a discussion of the legitimacy of various criteria for successful predictive inference, the development of an intuitive model which exhibits the difficulties of choosing probability measures over infinite sets, and a comparison of rival views on the foundations of probability in terms of the amount of information which the members of these schools believe suitable for fruitful formalization. The bibliographies include articles by statisticians accessible to students of symbolic logic.
This book addresses the argument in the history of the philosophy of science between the positivists and the anti-positivists. The author starts from a point of firm conviction that all science and philosophy must start with the given... But that the range of the given is not definite. He begins with an examination of science from the outside and then the inside, explaining his position on metaphysics and attempts to formulate the character of operational acts before a general theory of symbolism is explored. The last five chapters constitute a treatise to show that the development from one stage of symbolismto the next is inevitable, consequently that explanatory science represents the culmination of knowledge.
Originally published in 1973. This book presents a valid mode of reasoning that is different to mathematical probability. This inductive logic is investigated in terms of scientific investigation. The author presents his criteria of adequacy for analysing inductive support for hypotheses and discusses each of these criteria in depth. The chapters cover philosophical problems and paradoxes about experimental support, probability and justifiability, ending with a system of logical syntax of induction. Each section begins with a summary of its contents and there is a glossary of technical terms to aid the reader.
Originally published in 1964. This book is concerned with general arguments, by which is meant broadly arguments that rely for their force on the ideas expressed by all, every, any, some, none and other kindred words or phrases. A main object of quantificational logic is to provide methods for evaluating general arguments. To evaluate a general argument by these methods we must first express it in a standard form. Quantificational form is dealt with in chapter one and in part of chapter three; in the remainder of the book an account is given of methods by which arguments when formulated quantificationally may be tested for validity or invalidity. Some attention is also paid to the logic of identity and of definite descriptions. Throughout the book an attempt has been made to give a clear explanation of the concepts involved and the symbols used; in particular a step-by-step and partly mechanical method is developed for translating complicated statements of ordinary discourse into the appropriate quantificational formulae. Some elementary knowledge of truth-functional logic is presupposed.
Reviews of the first edition: ..".Gerstein wants-very gently-to teach his students to think. He wants to show them how to wrestle with a problem (one that is more sophisticated than "plug and chug"), how to build a solution, and ultimately he wants to teach the students to take a statement and develop a way to prove it...Gerstein writes with a certain flair that I think students will find appealing. For instance, after his discussion of cardinals he has a section entitled Languages and Finite Automata. This allows him to illustrate some of the ideas he has been discussing with problems that almost anyone can understand, but most importantly he shows how these rather transparent problems can be subjected to a mathematical analysis. His discussion of how a machine might determine whether the sequence of words "Celui fromage de la parce que maintenant" is a legitimate French sentence is just delightful (and even more so if one knows a little French.)...I am confident that a student who works through Gerstein's book will really come away with (i) some mathematical technique, and (ii) some mathematical knowledge. -Steven Krantz, American Mathematical Monthly "This very elementary book is intended to be a textbook for a one-term course which introduces students into the basic notions of any higher mathematics courses...The explanations of the basic notions are combined with some main theorems, illustrated by examples (with solutions if necessary) and complemented by exercises. The book is well written and should be easily understandable to any beginning student." -S. Gottwald, Zentralblatt This textbook is intended for a one-term course whose goal is to ease the transition from lower-division calculus courses to upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, combinatorics, etc. It contains a wide-ranging assortment of examples and imagery to motivate and to enhance the underlying intuitions, as well as numerous exercises and a solutions manual for professors. The new material in this second edition includes four more topics in number theory, a brief introduction to complex numbers, and a section on graph theory and combinatorial topics related to graphs. Introducing these additional topics gives the reader an even broader view of the mathematical experience.
Innovative Teaching: Best Practices from Business and Beyond for Mathematics Teachers provides educators with new and exciting ways to introduce material and methods to motivate and engage students by showing how some of the techniques commonly used in the business world - and beyond - are applicable to the world of education. It also offers educators practical advice with regard to the changing culture of education, keeping up with technology, navigating politics at work, interacting with colleagues, developing leadership skills, group behavior, and gender differences.Innovative Teaching demonstrates how the classroom environment is similar to the marketplace. Educators, like businesses, for example, must capture and hold the attention of their audience while competing with a constant stream of 'noise.' With the introduction of the Internet and the wide use of social media, promoters understand that they must not only engage their audience, but also incorporate audience feedback into the promotional work and product or service they offer. Innovative Teaching shows educators how to take the best practices from business - and beyond - and recombine these resources for appropriate use in the classroom.
Innovative Teaching: Best Practices from Business and Beyond for Mathematics Teachers provides educators with new and exciting ways to introduce material and methods to motivate and engage students by showing how some of the techniques commonly used in the business world - and beyond - are applicable to the world of education. It also offers educators practical advice with regard to the changing culture of education, keeping up with technology, navigating politics at work, interacting with colleagues, developing leadership skills, group behavior, and gender differences.Innovative Teaching demonstrates how the classroom environment is similar to the marketplace. Educators, like businesses, for example, must capture and hold the attention of their audience while competing with a constant stream of 'noise.' With the introduction of the Internet and the wide use of social media, promoters understand that they must not only engage their audience, but also incorporate audience feedback into the promotional work and product or service they offer. Innovative Teaching shows educators how to take the best practices from business - and beyond - and recombine these resources for appropriate use in the classroom.
The first edition of this award-winning book attracted a wide audience. This second edition is both a joy to read and a useful classroom tool. Unlike traditional textbooks, it requires no mathematical prerequisites and can be read around the mathematics presented. If used as a textbook, the mathematics can be prioritized, with a book both students and instructors will enjoy reading. Secret History: The Story of Cryptology, Second Edition incorporates new material concerning various eras in the long history of cryptology. Much has happened concerning the political aspects of cryptology since the first edition appeared. The still unfolding story is updated here. The first edition of this book contained chapters devoted to the cracking of German and Japanese systems during World War II. Now the other side of this cipher war is also told, that is, how the United States was able to come up with systems that were never broken. The text is in two parts. Part I presents classic cryptology from ancient times through World War II. Part II examines modern computer cryptology. With numerous real-world examples and extensive references, the author skillfully balances the history with mathematical details, providing readers with a sound foundation in this dynamic field. FEATURES Presents a chronological development of key concepts Includes the Vigenere cipher, the one-time pad, transposition ciphers, Jefferson's wheel cipher, Playfair cipher, ADFGX, matrix encryption, Enigma, Purple, and other classic methods Looks at the work of Claude Shannon, the origin of the National Security Agency, elliptic curve cryptography, the Data Encryption Standard, the Advanced Encryption Standard, public-key cryptography, and many other topics New chapters detail SIGABA and SIGSALY, successful systems used during World War II for text and speech, respectively Includes quantum cryptography and the impact of quantum computers
Originally published in 1965. This is a textbook of modern deductive logic, designed for beginners but leading further into the heart of the subject than most other books of the kind. The fields covered are the Propositional Calculus, the more elementary parts of the Predicate Calculus, and Syllogistic Logic treated from a modern point of view. In each of the systems discussed the main emphases are on Decision Procedures and Axiomatisation, and the material is presented with as much formal rigour as is compatible with clarity of exposition. The techniques used are not only described but given a theoretical justification. Proofs of Consistency, Completeness and Independence are set out in detail. The fundamental characteristics of the various systems studies, and their relations to each other are established by meta-logical proofs, which are used freely in all sections of the book. Exercises are appended to most of the chapters, and answers are provided.
Originally published in 1973. This book is directed to the student of philosophy whose background in mathematics is very limited. The author strikes a balance between material of a philosophical and a formal kind, and does this in a way that will bring out the intricate connections between the two. On the formal side, he gives particular care to provide the basic tools from set theory and arithmetic that are needed to study systems of logic, setting out completeness results for two, three, and four valued logic, explaining concepts such as freedom and bondage in quantificational logic, describing the intuitionistic conception of the logical operators, and setting out Zermelo's axiom system for set theory. On the philosophical side, he gives particular attention to such topics as the problem of entailment, the import of the Loewenheim-Skolem theorem, the expressive powers of quantificational logic, the ideas underlying intuitionistic logic, the nature of set theory, and the relationship between logic and set theory. There are exercises within the text, set out alongside the theoretical ideas that they involve.
Scientific Computing with MATLAB (R), Second Edition improves students' ability to tackle mathematical problems. It helps students understand the mathematical background and find reliable and accurate solutions to mathematical problems with the use of MATLAB, avoiding the tedious and complex technical details of mathematics. This edition retains the structure of its predecessor while expanding and updating the content of each chapter. The book bridges the gap between problems and solutions through well-grouped topics and clear MATLAB example scripts and reproducible MATLAB-generated plots. Students can effortlessly experiment with the scripts for a deep, hands-on exploration. Each chapter also includes a set of problems to strengthen understanding of the material.
Originally published in 1962. This book gives an account of the concepts and methods of a basic part of logic. In chapter I elementary ideas, including those of truth-functional argument and truth-functional validity, are explained. Chapter II begins with a more comprehensive account of truth-functionality; the leading characteristics of the most important monadic and dyadic truth-functions are described, and the different notations in use are set forth. The main part of the book describes and explains three different methods of testing truth-functional aguments and agument forms for validity: the truthtable method, the deductive method and the method of normal forms; for the benefit mainly of readers who have not acquired in one way or another a general facility in the manipulation of symbols some of the procedures have been described in rather more detail than is common in texts of this kind. In the final chapter the author discusses and rejects the view, based largely on the so called paradoxes of material implication, that truth-functional logic is not applicable in any really important way to arguments of ordinary discourse.
Originally published in 1962. A clear and simple account of the growth and structure of Mathematical Logic, no earlier knowledge of logic being required. After outlining the four lines of thought that have been its roots - the logic of Aristotle, the idea of all the parts of mathematics as systems to be designed on the same sort of plan as that used by Euclid and his Elements, and the discoveries in algebra and geometry in 1800-1860 - the book goes on to give some of the main ideas and theories of the chief writers on Mathematical Logic: De Morgan, Boole, Jevons, Pierce, Frege, Peano, Whitehead, Russell, Post, Hilbert and Goebel. Written to assist readers who require a general picture of current logic, it will also be a guide for those who will later be going more deeply into the expert details of this field.
Originally published in 1966. Professor Rescher's aim is to develop a "logic of commands" in exactly the same general way which standard logic has already developed a "logic of truth-functional statement compounds" or a "logic of quantifiers". The object is to present a tolerably accurate and precise account of the logically relevant facets of a command, to study the nature of "inference" in reasonings involving commands, and above all to establish a viable concept of validity in command inference, so that the logical relationships among commands can be studied with something of the rigour to which one is accustomed in other branches of logic.
Originally published in 1931. This inquiry investigates and develops John Cook Wilson's view of the province of logic. It bases the study on the posthumous collected papers Statement and Inference. The author seeks to answer questions on the nature of logic using Cook Wilson's thought. The chapters introduce and consider topics from metaphysics to grammar and from psychology to knowledge. An early conception of logic in the sciences and presenting the work of an important twentieth century philosopher, this is an engaging work.
Originally published in 1937. A short account of the traditional logic, intended to provide the student with the fundamentals necessary for the specialized study. Suitable for working through individualy, it will provide sufficient knowledge of the elements of the subject to understand materials on more advanced and specialized topics. This is an interesting historic perspective on this area of philosophy and mathematics.
Metaheuristic optimization is a higher-level procedure or heuristic designed to find, generate, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information or limited computation capacity. This is usually applied when two or more objectives are to be optimized simultaneously. This book is presented with two major objectives. Firstly, it features chapters by eminent researchers in the field providing the readers about the current status of the subject. Secondly, algorithm-based optimization or advanced optimization techniques, which are applied to mostly non-engineering problems, are applied to engineering problems. This book will also serve as an aid to both research and industry. Usage of these methodologies would enable the improvement in engineering and manufacturing technology and support an organization in this era of low product life cycle. Features: Covers the application of recent and new algorithms Focuses on the development aspects such as including surrogate modeling, parallelization, game theory, and hybridization Presents the advances of engineering applications for both single-objective and multi-objective optimization problems Offers recent developments from a variety of engineering fields Discusses Optimization using Evolutionary Algorithms and Metaheuristics applications in engineering
This book contains fundamental concepts on discrete mathematical structures in an easy to understand style so that the reader can grasp the contents and explanation easily. The concepts of discrete mathematical structures have application to computer science, engineering and information technology including in coding techniques, switching circuits, pointers and linked allocation, error corrections, as well as in data networking, Chemistry, Biology and many other scientific areas. The book is for undergraduate and graduate levels learners and educators associated with various courses and progammes in Mathematics, Computer Science, Engineering and Information Technology. The book should serve as a text and reference guide to many undergraduate and graduate programmes offered by many institutions including colleges and universities. Readers will find solved examples and end of chapter exercises to enhance reader comprehension. Features Offers comprehensive coverage of basic ideas of Logic, Mathematical Induction, Graph Theory, Algebraic Structures and Lattices and Boolean Algebra Provides end of chapter solved examples and practice problems Delivers materials on valid arguments and rules of inference with illustrations Focuses on algebraic structures to enable the reader to work with discrete structures
Proof techniques in cryptography are very difficult to understand, even for students or researchers who major in cryptography. In addition, in contrast to the excessive emphases on the security proofs of the cryptographic schemes, practical aspects of them have received comparatively less attention. This book addresses these two issues by providing detailed, structured proofs and demonstrating examples, applications and implementations of the schemes, so that students and practitioners may obtain a practical view of the schemes. Seong Oun Hwang is a professor in the Department of Computer Engineering and director of Artificial Intelligence Security Research Center, Gachon University, Korea. He received the Ph.D. degree in computer science from the Korea Advanced Institute of Science and Technology (KAIST), Korea. His research interests include cryptography, cybersecurity, networks, and machine learning. Intae Kim is an associate research fellow at the Institute of Cybersecurity and Cryptology, University of Wollongong, Australia. He received the Ph.D. degree in electronics and computer engineering from Hongik University, Korea. His research interests include cryptography, cybersecurity, and networks. Wai Kong Lee is an assistant professor in UTAR (University Tunku Abdul Rahman), Malaysia. He received the Ph.D. degree in engineering from UTAR, Malaysia. In between 2009 - 2012, he served as an R&D engineer in several multinational companies including Agilent Technologies (now known as Keysight) in Malaysia. His research interests include cryptography engineering, GPU computing, numerical algorithms, Internet of Things (IoT) and energy harvesting. |
You may like...
Integral Equations with Difference…
Lev A. Sakhnovich
Hardcover
Hardy Type Inequalities on Time Scales
Ravi P. Agarwal, Donal O'Regan, …
Hardcover
R3,741
Discovery Miles 37 410
Classical and Multidimensional Lorentz…
Rene Erlin Castillo, Hector Camilo Chaparro
Hardcover
R5,131
Discovery Miles 51 310
Further Developments in Fractals and…
Julien Barral, Stephane Seuret
Hardcover
R3,406
Discovery Miles 34 060
Linear Systems, Signal Processing and…
Daniel Alpay, Mihaela B. Vajiac
Hardcover
R4,274
Discovery Miles 42 740
Concentration Analysis and Applications…
Adimurthi, K. Sandeep, …
Hardcover
R2,647
Discovery Miles 26 470
Reality and Measurement in Algebraic…
Masanao Ozawa, Jeremy Butterfield, …
Hardcover
R4,748
Discovery Miles 47 480
Operator Theory, Analysis and the State…
Harm Bart, Sanne ter Horst, …
Hardcover
R2,512
Discovery Miles 25 120
Operator Theory in Harmonic and…
Joseph A Ball, Michael A. Dritschel, …
Hardcover
|