![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This book explains exactly what human knowledge is. The key concepts in this book are structures and algorithms, i.e., what the readers "see" and how they make use of what they see. Thus in comparison with some other books on the philosophy (or methodology) of science, which employ a syntactic approach, the author's approach is model theoretic or structural. Properly understood, it extends the current art and science of mathematical modeling to all fields of knowledge. The link between structure and algorithms is mathematics. But viewing "mathematics" as such a link is not exactly what readers most likely learned in school; thus, the task of this book is to explain what "mathematics" should actually mean. Chapter 1, an introductory essay, presents a general analysis of structures, algorithms and how they are to be linked. Several examples from the natural and social sciences, and from the history of knowledge, are provided in Chapters 2-6. In turn, Chapters 7 and 8 extend the analysis to include language and the mind. Structures are what the readers see. And, as abstract cultural objects, they can almost always be seen in many different ways. But certain structures, such as natural numbers and the basic theory of grammar, seem to have an absolute character. Any theory of knowledge grounded in human culture must explain how this is possible. The author's analysis of this cultural invariance, combining insights from evolutionary theory and neuroscience, is presented in the book's closing chapter. The book will be of interest to researchers, students and those outside academia who seek a deeper understanding of knowledge in our present-day society.
Mathematical Puzzle Tales from Mount Olympus uses fascinating tales from Greek Mythology as the background for introducing mathematics puzzles to the general public. A background in high school mathematics will be ample preparation for using this book, and it should appeal to anyone who enjoys puzzles and recreational mathematics. Features: Combines the arts and science, and emphasizes the fact that mathematics straddles both domains. Great resource for students preparing for mathematics competitions, and the trainers of such students.
As society comes to rely increasingly on software for its welfare
and prosperity there is an urgent need to create systems in which
it can trust. Experience has shown that confidence can only come
from a more profound understanding of the issues, which in turn can
come only if it is based on logically sound foundations.
Automata Theory and its Applications is a uniform treatment of the theory of finite state machines on finite and infinite strings and trees. Many books deal with automata on finite strings, but there are very few expositions that prove the fundamental results of automata on infinite strings and trees. These results have important applications to modeling parallel computation and concurrency, the specification and verification of sequential and concurrent programs, databases, operating systems, computational complexity, and decision methods in logic and algebra. Thus, this textbook fills an important gap in the literature by exposing early fundamental results in automata theory and its applications. Beginning with coverage of all standard fundamental results regarding finite automata, the book deals in great detail with BA1/4chi and Rabin automata and their applications to various logical theories such as S1S and S2S, and describes game-theoretic models of concurrent operating and communication systems. The book is self-contained with numerous examples, illustrations, exercises, and is suitable for a two-semester undergraduate course for computer science or mathematics majors, or for a one-semester graduate course/seminar. Since no advanced mathematical background is required, the text is also useful for self-study by computer science professionals who wish to understand the foundations of modern formal approaches to software development, validation, and verification.
Introduces the GUHA method of mechanizing hypothesis formation as a data mining tool. Presents examples of data mining with enhanced association rules, histograms, contingency tables and action rules. Provides examples of data mining for exception rules and examples of subgroups discovery. Outlines possibilities of GUHA in business intelligence and big data. Overviews related theoretical results and challenges related to mechanizing hypothesis formation.
This book presents a philosophy of science, based on panenmentalism: an original modal metaphysics, which is realist about individual pure (non-actual) possibilities and rejects the notion of possible worlds. The book systematically constructs a new and novel way of understanding and explaining scientific progress, discoveries, and creativity. It demonstrates that a metaphysics of individual pure possibilities is indispensable for explaining and understanding mathematics and natural sciences. It examines the nature of individual pure possibilities, actualities, mind-dependent and mind-independent possibilities, as well as mathematical entities. It discusses in detail the singularity of each human being as a psychical possibility. It analyses striking scientific discoveries, and illustrates by means of examples of the usefulness and vitality of individual pure possibilities in the sciences.
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for foundational issues, as well as new material elaborating on the univalent foundations, considering an approach based on homotopy type theory (HoTT). The third section then builds on this and is centred on philosophical questions connected to the foundations of mathematics. Here, the authors contribute to discussions on foundational criteria with more general thoughts on the foundations of mathematics which are not connected to particular theories. This book shares the work of some of the most important scholars in the fields of set theory (S. Friedman), non-classical logic (G. Priest) and the philosophy of mathematics (P. Maddy). The reader will become aware of the advantages of each theory and objections to it as a foundation, following the latest and best work across the disciplines and it is therefore a valuable read for anyone working on the foundations of mathematics or in the philosophy of mathematics.
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the seventh publication in the Lecture Notes in Logic series, Font and Jansana develop a very general approach to the algebraization of sentential logics and present its results on a number of particular logics. The authors compare their approach, which uses abstract logics, to the classical approach based on logical matrices and the equational consequence developed by Blok, Czelakowski, Pigozzi and others. This monograph presents a systematized account of some of the work on the algebraic study of sentential logics carried out by the logic group in Barcelona in the 1970s.
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language - and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of "building" objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell's paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Large cardinal hypotheses play a central role in modern set theory. One important way to understand such hypotheses is to construct concrete, minimal universes, or 'core models', satisfying them. Since Goedel's pioneering work on the universe of constructible sets, several larger core models satisfying stronger hypotheses have been constructed, and these have proved quite useful. In this volume, the eighth publication in the Lecture Notes in Logic series, Steel extends this theory so that it can produce core models having Woodin cardinals, a large cardinal hypothesis that is the focus of much current research. The book is intended for advanced graduate students and researchers in set theory.
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the Lecture Notes in Logic series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory.
The present book aims to provide systematic and reliable techniques, called the global solution, for Sudoku puzzles. Any proper Sudoku puzzle, which has one and only one solution of Sudoku, can be solved by anyone following the techniques provided in this book. Specific symbols are introduced to express the 6 basic rules of the Sudoku global solution, as the results, those Sudoku solving techniques are presented similar to the annotations in chess. Finnish mathematician Arto Inkala proposed 'the most difficult Sudoku puzzle' in 2007. Then, he designed another difficult Sudoku puzzle in 2012, named 'the thing Everest'. In the present book the solving process of those two difficult Sudoku puzzles are illustrated reliably by the specific symbols of the global solution step by step.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
This book focuses on one of the major challenges of the newly created scientific domain known as data science: turning data into actionable knowledge in order to exploit increasing data volumes and deal with their inherent complexity. Actionable knowledge has been qualitatively and intensively studied in management, business, and the social sciences but in computer science and engineering, its connection has only recently been established to data mining and its evolution, 'Knowledge Discovery and Data Mining' (KDD). Data mining seeks to extract interesting patterns from data, but, until now, the patterns discovered from data have not always been 'actionable' for decision-makers in Socio-Technical Organizations (STO). With the evolution of the Internet and connectivity, STOs have evolved into Cyber-Physical and Social Systems (CPSS) that are known to describe our world today. In such complex and dynamic environments, the conventional KDD process is insufficient, and additional processes are required to transform complex data into actionable knowledge. Readers are presented with advanced knowledge concepts and the analytics and information fusion (AIF) processes aimed at delivering actionable knowledge. The authors provide an understanding of the concept of 'relation' and its exploitation, relational calculus, as well as the formalization of specific dimensions of knowledge that achieve a semantic growth along the AIF processes. This book serves as an important technical presentation of relational calculus and its application to processing chains in order to generate actionable knowledge. It is ideal for graduate students, researchers, or industry professionals interested in decision science and knowledge engineering.
Digital forensics plays a crucial role in identifying, analysing, and presenting cyber threats as evidence in a court of law. Artificial intelligence, particularly machine learning and deep learning, enables automation of the digital investigation process. This book provides an in-depth look at the fundamental and advanced methods in digital forensics. It also discusses how machine learning and deep learning algorithms can be used to detect and investigate cybercrimes. This book demonstrates digital forensics and cyber-investigating techniques with real-world applications. It examines hard disk analytics and style architectures, including Master Boot Record and GUID Partition Table as part of the investigative process. It also covers cyberattack analysis in Windows, Linux, and network systems using virtual machines in real-world scenarios. Digital Forensics in the Era of Artificial Intelligence will be helpful for those interested in digital forensics and using machine learning techniques in the investigation of cyberattacks and the detection of evidence in cybercrimes.
Digital forensics plays a crucial role in identifying, analysing, and presenting cyber threats as evidence in a court of law. Artificial intelligence, particularly machine learning and deep learning, enables automation of the digital investigation process. This book provides an in-depth look at the fundamental and advanced methods in digital forensics. It also discusses how machine learning and deep learning algorithms can be used to detect and investigate cybercrimes. This book demonstrates digital forensics and cyber-investigating techniques with real-world applications. It examines hard disk analytics and style architectures, including Master Boot Record and GUID Partition Table as part of the investigative process. It also covers cyberattack analysis in Windows, Linux, and network systems using virtual machines in real-world scenarios. Digital Forensics in the Era of Artificial Intelligence will be helpful for those interested in digital forensics and using machine learning techniques in the investigation of cyberattacks and the detection of evidence in cybercrimes.
The International Biometric Society (IBS) was formed at the First International Biometric Conference at Woods Hole on September 6, 1947. The History of the International Biometric Society presents a deep dive into the voluminous archival records, with primary focus on IBS's first fifty years. It contains numerous photos and extracts from the archival materials, and features many photos of important leaders who served IBS across the decades. Features: Describes events leading up to and at Woods Hole on September 6, 1947 that led to the formation of IBS Outlines key markers that shaped IBS after the 1947 formation through to the modern day Describes the regional and national group structure, and the formation of regions and national groups Describes events surrounding the key scientific journal of IBS, Biometrics, including the transfer of ownership to IBS, content, editors, policies, management, and importance Describes the other key IBS publications - Biometric Bulletin, Journal of Agricultural Biological and Environmental Statistics, and regional publications Provides details of International Biometric Conferences and key early symposia Describes IBS constitution and by-laws processes, and the evolution of business arrangements Provides a record of international officers, including regional presidents, national group secretaries, journal editors, and the locations of meetings Includes a gallery of international Presidents, and a gallery of Secretaries and Treasurers The History of the International Biometric Society will appeal to anyone interested in the activities of our statistical and biometrical forebearers. The focus is on issues and events that engaged the attention of the officers of IBS. Some of these records are riveting, some entertaining, some intriguing, and some colorful. Some of the issues covered were difficult to handle, but even these often resulted in changes that benefited IBS.
The International Biometric Society (IBS) was formed at the First International Biometric Conference at Woods Hole on September 6, 1947. The History of the International Biometric Society presents a deep dive into the voluminous archival records, with primary focus on IBS's first fifty years. It contains numerous photos and extracts from the archival materials, and features many photos of important leaders who served IBS across the decades. Features: Describes events leading up to and at Woods Hole on September 6, 1947 that led to the formation of IBS Outlines key markers that shaped IBS after the 1947 formation through to the modern day Describes the regional and national group structure, and the formation of regions and national groups Describes events surrounding the key scientific journal of IBS, Biometrics, including the transfer of ownership to IBS, content, editors, policies, management, and importance Describes the other key IBS publications - Biometric Bulletin, Journal of Agricultural Biological and Environmental Statistics, and regional publications Provides details of International Biometric Conferences and key early symposia Describes IBS constitution and by-laws processes, and the evolution of business arrangements Provides a record of international officers, including regional presidents, national group secretaries, journal editors, and the locations of meetings Includes a gallery of international Presidents, and a gallery of Secretaries and Treasurers The History of the International Biometric Society will appeal to anyone interested in the activities of our statistical and biometrical forebearers. The focus is on issues and events that engaged the attention of the officers of IBS. Some of these records are riveting, some entertaining, some intriguing, and some colorful. Some of the issues covered were difficult to handle, but even these often resulted in changes that benefited IBS.
This is a systematic and well-paced introduction to mathematical logic. Excellent as a course text, the book presupposes only elementary background and can be used also for self-study by more ambitious students.Starting with the basics of set theory, induction and computability, it covers propositional and first order logic - their syntax, reasoning systems and semantics. Soundness and completeness results for Hilbert's and Gentzen's systems are presented, along with simple decidability arguments. The general applicability of various concepts and techniques is demonstrated by highlighting their consistent reuse in different contexts.Unlike in most comparable texts, presentation of syntactic reasoning systems precedes the semantic explanations. The simplicity of syntactic constructions and rules - of a high, though often neglected, pedagogical value - aids students in approaching more complex semantic issues. This order of presentation also brings forth the relative independence of syntax from the semantics, helping to appreciate the importance of the purely symbolic systems, like those underlying computers.An overview of the history of logic precedes the main text, while informal analogies precede introduction of most central concepts. These informal aspects are kept clearly apart from the technical ones. Together, they form a unique text which may be appreciated equally by lecturers and students occupied with mathematical precision, as well as those interested in the relations of logical formalisms to the problems of computability and the philosophy of logic.This revised edition contains also, besides many new exercises, a new chapter on semantic paradoxes. An equivalence of logical and graphical representations allows us to see vicious circularity as the odd cycles in the graphical representation and can be used as a simple tool for diagnosing paradoxes in natural discourse.
The book draws on Prof. Perkowitz's career as successful researcher, teacher, and writer and his broad interests to give him unique insights into how science and scientists connect with general culture and society. The book is especially strong in its coverage of science and art, and science in film. Illustrations from Hollywood films and independent and experimental films increase the book's appeal. The book's mix of varied topics in science and technology, and of short and long pieces written in accessible style, will appeal to general readers.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the tenth publication in the Lecture Notes in Logic series, Per Lindstroem presents some of the main topics and results in general metamathematics. In addition to standard results of Goedel et al. on incompleteness, (non-)finite axiomatizability, and interpretability, this book contains a thorough treatment of partial conservativity and degrees of interpretability. It comes complete with exercises, and will be useful as a textbook for graduate students with a background in logic, as well as a valuable resource for researchers.
Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes. |
![]() ![]() You may like...
Seriation in Combinatorial and…
Israel Cesar Lerman, Henri Leredde
Hardcover
R4,588
Discovery Miles 45 880
Social Sensing - Building Reliable…
Dong Wang, Tarek Abdelzaher, …
Paperback
R1,924
Discovery Miles 19 240
Intelligent Computing for Interactive…
Parisa Eslambolchilar, Mark Dunlop, …
Hardcover
R2,492
Discovery Miles 24 920
Machine Learning for Intelligent…
Jitendra Kumar Rout, Minakhi Rout, …
Hardcover
R4,604
Discovery Miles 46 040
Modeling and Simulating Complex Business…
Zoumpolia Dikopoulou
Hardcover
R3,608
Discovery Miles 36 080
Sediment Compaction and Applications in…
Troyee Dasgupta, Soumyajit Mukherjee
Hardcover
R4,108
Discovery Miles 41 080
|