![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander-Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander-Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
This volume comprises an imaginative collection of pieces created in tribute to Martin Gardner. Perhaps best known for writing Scientific American's "Mathematical Games" column for years, Gardner used his personal exuberance and fascination with puzzles and magic to entice a wide range of readers into a world of mathematical discovery. This tribute therefore contains pieces as widely varied as Gardner's own interests, ranging from limericks to lengthy treatises, from mathematical journal articles to personal stories. This book makes a charming and unusual addition to any personal library. Selected papers: - The Odyssey of the Figure Eight Puzzle by Stewart Coffin - Block-Packing Jambalaya by Bill Cutler - O'Beirne's Hexiamond by Richard K. Guy - Biblical Ladders by Donald E. Knuth - Three Limericks: On Space, Time and Speed by Tim Rowett.
This book on proof theory centers around the legacy of Kurt Schutte and its current impact on the subject. Schutte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schutte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound 0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi for impredicative theories. Schutte had a keen interest in advancing ordinal analysis to ever stronger theories and was still working on some of the strongest systems in his eighties. The articles in this volume from leading experts close to his research, show the enduring influence of his work in modern proof theory. They range from eye witness accounts of his scientific life to developments at the current research frontier, including papers by Schutte himself that have never been published before.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Godel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Godel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to thetheory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
This book addresses mechanisms for reducing model heterogeneity induced by the absence of explicit semantics expression in the formal techniques used to specify design models. More precisely, it highlights the advances in handling both implicit and explicit semantics in formal system developments, and discusses different contributions expressing different views and perceptions on the implicit and explicit semantics. The book is based on the discussions at the Shonan meeting on this topic held in 2016, and includes contributions from the participants summarising their perspectives on the problem and offering solutions. Divided into 5 parts: domain modelling, knowledge-based modelling, proof-based modelling, assurance cases, and refinement-based modelling, and offers inspiration for researchers and practitioners in the fields of formal methods, system and software engineering, domain knowledge modelling, requirement analysis, and explicit and implicit semantics of modelling languages.
"Contains the contributions of 45 internationally distinguished mathematicians covering all areas of approximation theory-written in honor of the pioneering work of Arun K. Varma to the fields of interpolation and approximation of functions, including Birhoff interpolation and approximation by spline functions."
This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a 'non-atomic structure' with an 'atomic, finitely supported structure'. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents. In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of 'cardinality' by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzy subsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of 'infinity' (Dedekind infinity, Mostowski infinity, Kuratowski infinity, Tarski infinity, ascending infinity) are introduced, compared and studied in the new framework. Relevant examples of sets that satisfy some forms of infinity while not satisfying others are provided. Uniformly supported sets are analyzed, and certain surprising properties are presented. Finally, some variations of the finite support requirement are discussed. The book will be of value to researchers in the foundations of set theory, algebra and logic.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.
All current methods of secure communication such as public-key cryptography can eventually be broken by faster computing. At the interface of physics and computer science lies a powerful solution for secure communications: quantum cryptography. Because eavesdropping changes the physical nature of the information, users in a quantum exchange can easily detect eavesdroppers. This allows for totally secure random key distribution, a central requirement for use of the one-time pad. Since the one-time pad is theoretically proven to be undecipherable, quantum cryptography is the key to perfect secrecy. Quantum Communications and Cryptography is the first comprehensive review of the past, present, and potential developments in this dynamic field. Leading expert contributors from around the world discuss the scientific foundations, experimental and theoretical developments, and cutting-edge technical and engineering advances in quantum communications and cryptography. The book describes the engineering principles and practical implementations in a real-world metropolitan network as well as physical principles and experimental results of such technologies as entanglement swapping and quantum teleportation. It also offers the first detailed treatment of quantum information processing with continuous variables. Technologies include both free-space and fiber-based communications systems along with the necessary protocols and information processing approaches. Bridging the gap between physics and engineering, Quantum Communications and Cryptography supplies a springboard for further developments and breakthroughs in this rapidly growing area.
The contributions in this book survey results on combinations of probabilistic and various other classical, temporal and justification logical systems. Formal languages of these logics are extended with probabilistic operators. The aim is to provide a systematic overview and an accessible presentation of mathematical techniques used to obtain results on formalization, completeness, compactness and decidability. The book will be of value to researchers in logic and it can be used as a supplementary text in graduate courses on non-classical logics.
The International research Library of Philosophy collects in book form a wide range of important and influential essays in philosophy, drawn predominantly from English-language journals. Each volume in the library deals with a field of enquiry which has received significant attention in philosophy in the last 25 years and is edited by a philosopher noted in that field.
The major focus of this book is measurement and categorization in set theory, most notably on results dealing with asymmetry. The authors delve into the study of a deep symmetry between the concept of Lebesque measurability and the Baire property, and obtain findings on the structure of the real line.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
MATRIX is Australia's international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
A compact and easily accessible book, it guides the reader in unravelling the apparent mysteries found in doing mathematical proofs. Simply written, it introduces the art and science of proving mathematical theorems and propositions and equips students with the skill required to tackle the task of proving mathematical assertions. Theoremus - A Student's Guide to Mathematical Proofs is divided into two parts. Part 1 provides a grounding in the notion of mathematical assertions, arguments and fallacies and Part 2, presents lessons learned in action by applying them into the study of logic itself. The book supplies plenty of examples and figures, gives some historical background on personalities that gave rise to the topic and provides reflective problems to try and solve. The author aims to provide the reader with the confidence to take a deep dive into some more advanced work in mathematics or logic.
The aim of this book is to present mathematical logic to students who are interested in what this field is but have no intention of specializing in it. The point of view is to treat logic on an equal footing to any other topic in the mathematical curriculum. The book starts with a presentation of naive set theory, the theory of sets that mathematicians use on a daily basis. Each subsequent chapter presents one of the main areas of mathematical logic: first order logic and formal proofs, model theory, recursion theory, Godel's incompleteness theorem, and, finally, the axiomatic set theory. Each chapter includes several interesting highlights-outside of logic when possible-either in the main text, or as exercises or appendices. Exercises are an essential component of the book, and a good number of them are designed to provide an opening to additional topics of interest.
Formal Methods in Computer Science gives students a comprehensive introduction to formal methods and their application in software and hardware specification and verification. The first part introduces some fundamentals in formal methods, including set theory, functions, finite state machines, and regular expressions. The second part focuses on logic, a powerful formal language in specifying systems properties. It covers propositional logic, predicate logic, temporal logic, and model checking. The third part presents Petri nets, the most popular formal language in system behavior modeling. In additional to regular Petri nets, this part also examines timed Petri nets and high-level Petri nets. The textbook is ideal for undergraduate or graduate courses in computer engineering, software engineering, computer science, and information technology programs. Parts of the book are useful reading material in undergraduate computer course and as a reference guide for students researching the area of formal system specification and validation. Features * Introduces a comprehensive, yet manageable set of formal techniques for computer science students * Stresses real-world application value of each formal technique * Offers a good set of exercises which help students better understand the presented techniques * Also offers a prepared source code for downloading and non-commercial use
Splines are the fundamental tools for fitting curves and surfaces in computer-aided design and computer graphics. This volume presents a practical introduction to computing spline functions and takes the elementary and directly available approach of using explicit and easily evaluated forms of the spline interpolants. Spath outlines the conditions under which splines can be best applied and integrates into his presentation numerous formulas and algorithms to emphasize his concepts. He also includes FORTRAN-77 subroutines which can be applied to the abundant problems illustrated and treated in the book which in turn allows the reader to assess the performance of various spline interpolants based on the configuration of the data. A program disc is available to supplement the text and there is also a companion volume, One Dimensional Spline Interpolation Algorithms.
This book is about "diamond," a logic of paradox. In diamond, a statement can be true yet false; an "imaginary" state, midway between being and non-being. Diamond's imaginary values solve many logical paradoxes unsolvable in two-valued boolean logic. In this volume, paradoxes by Russell, Cantor, Berry and Zeno are all resolved. This book has three sections: Paradox Logic, which covers the classic paradoxes of mathematical logic, shows how they can be resolved in this new system; The Second Paradox, which relates diamond to Boolean logic and the Spencer-Brown "modulator"; and Metamathematical Dilemma, which relates diamond to Gdelian meta-mathematics and dilemma games.
This text is the fifth and final in the series of educational books written by Israel Gelfand with his colleagues for high school students. These books cover the basics of mathematics in a clear and simple format - the style Gelfand was known for internationally. Gelfand prepared these materials so as to be suitable for independent studies, thus allowing students to learn and practice the material at their own pace without a class. Geometry takes a different approach to presenting basic geometry for high-school students and others new to the subject. Rather than following the traditional axiomatic method that emphasizes formulae and logical deduction, it focuses on geometric constructions. Illustrations and problems are abundant throughout, and readers are encouraged to draw figures and "move" them in the plane, allowing them to develop and enhance their geometrical vision, imagination, and creativity. Chapters are structured so that only certain operations and the instruments to perform these operations are available for drawing objects and figures on the plane. This structure corresponds to presenting, sequentially, projective, affine, symplectic, and Euclidean geometries, all the while ensuring students have the necessary tools to follow along. Geometry is suitable for a large audience, which includes not only high school geometry students, but also teachers and anyone else interested in improving their geometrical vision and intuition, skills useful in many professions. Similarly, experienced mathematicians can appreciate the book's unique way of presenting plane geometry in a simple form while adhering to its depth and rigor. "Gelfand was a great mathematician and also a great teacher. The book provides an atypical view of geometry. Gelfand gets to the intuitive core of geometry, to the phenomena of shapes and how they move in the plane, leading us to a better understanding of what coordinate geometry and axiomatic geometry seek to describe." - Mark Saul, PhD, Executive Director, Julia Robinson Mathematics Festival "The subject matter is presented as intuitive, interesting and fun. No previous knowledge of the subject is required. Starting from the simplest concepts and by inculcating in the reader the use of visualization skills, [and] after reading the explanations and working through the examples, you will be able to confidently tackle the interesting problems posed. I highly recommend the book to any person interested in this fascinating branch of mathematics." - Ricardo Gorrin, a student of the Extended Gelfand Correspondence Program in Mathematics (EGCPM)
This monograph presents a general theory of weakly implicative logics, a family covering a vast number of non-classical logics studied in the literature, concentrating mainly on the abstract study of the relationship between logics and their algebraic semantics. It can also serve as an introduction to (abstract) algebraic logic, both propositional and first-order, with special attention paid to the role of implication, lattice and residuated connectives, and generalized disjunctions. Based on their recent work, the authors develop a powerful uniform framework for the study of non-classical logics. In a self-contained and didactic style, starting from very elementary notions, they build a general theory with a substantial number of abstract results. The theory is then applied to obtain numerous results for prominent families of logics and their algebraic counterparts, in particular for superintuitionistic, modal, substructural, fuzzy, and relevant logics. The book may be of interest to a wide audience, especially students and scholars in the fields of mathematics, philosophy, computer science, or related areas, looking for an introduction to a general theory of non-classical logics and their algebraic semantics.
This volume gathers selected papers presented at the Fourth Asian Workshop on Philosophical Logic, held in Beijing in October 2018. The contributions cover a wide variety of topics in modal logic (epistemic logic, temporal logic and dynamic logic), proof theory, algebraic logic, game logics, and philosophical foundations of logic. They also reflect the interdisciplinary nature of logic - a subject that has been studied in fields as diverse as philosophy, linguistics, mathematics, computer science and artificial intelligence. More specifically. The book also presents the latest developments in logic both in Asia and beyond. |
![]() ![]() You may like...
Lung Cancer - Strategies for Diagnosis…
Alba Fabiola Costa Torres
Hardcover
R3,344
Discovery Miles 33 440
|