![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Over the past 20 years, the emergence of clone theory, hyperequational theory, commutator theory and tame congruence theory has led to a growth of universal algebra both in richness and in applications, especially in computer science. Yet most of the classic books on the subject are long out of print and, to date, no other book has integrated these theories with the long-established work that supports them.
Among the most exciting developments in science today is the design and construction of the quantum computer. Its realization will be the result of multidisciplinary efforts, but ultimately, it is mathematics that lies at the heart of theoretical quantum computer science.
Proof complexity is a rich subject drawing on methods from logic, combinatorics, algebra and computer science. This self-contained book presents the basic concepts, classical results, current state of the art and possible future directions in the field. It stresses a view of proof complexity as a whole entity rather than a collection of various topics held together loosely by a few notions, and it favors more generalizable statements. Lower bounds for lengths of proofs, often regarded as the key issue in proof complexity, are of course covered in detail. However, upper bounds are not neglected: this book also explores the relations between bounded arithmetic theories and proof systems and how they can be used to prove upper bounds on lengths of proofs and simulations among proof systems. It goes on to discuss topics that transcend specific proof systems, allowing for deeper understanding of the fundamental problems of the subject.
This volume, which ten years ago appeared as the first in the acclaimed series Lecture Notes in Logic, serves as an introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. The clarity and focus of this text have established it as a classic instrument for teaching and self-study that prepares its readers for the study of advanced monographs and the current literature on recursion theory.
This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Model theory investigates mathematical structures by means of formal languages. These so-called first-order languages have proved particularly useful. The text introduces the reader to the model theory of first-order logic, avoiding syntactical issues that are not too relevant to model-theory. In this spirit, the compactness theorem is proved via the algebraically useful ultraproduct technique, rather than via the completeness theorem of first-order logic. This leads fairly quickly to algebraic applications, like Malcev's local theorems (of group theory) and, after a little more preparation, also to Hilbert's Nullstellensatz (of field theory). Steinitz' dimension theory for field extensions is obtained as a special case of a much more general model-theoretic treatment of strongly minimal sets. The final chapter is on the models of the first-order theory of the integers as an abelian group. This material appears here for the first time in a textbook of introductory level, and is used to give hints to further reading and to recent developments in the field, such as stability (or classification) theory. The latter itself is not touched upon. The undergraduate or graduate, is assumed t
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff's classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff's initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann - Bernays - Godel and Zermelo - Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo - Fraenkel set theory Compactness theorem for generalized second-order language
Through three editions, Cryptography: Theory and Practice, has been embraced by instructors and students alike. It offers a comprehensive primer for the subject's fundamentals while presenting the most current advances in cryptography. The authors offer comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the seemingly infinite and increasing amount of information circulating around the world. Key Features of the Fourth Edition: New chapter on the exciting, emerging new area of post-quantum cryptography (Chapter 9). New high-level, nontechnical overview of the goals and tools of cryptography (Chapter 1). New mathematical appendix that summarizes definitions and main results on number theory and algebra (Appendix A). An expanded treatment of stream ciphers, including common design techniques along with coverage of Trivium. Interesting attacks on cryptosystems, including: padding oracle attack correlation attacks and algebraic attacks on stream ciphers attack on the DUAL-EC random bit generator that makes use of a trapdoor. A treatment of the sponge construction for hash functions and its use in the new SHA-3 hash standard. Methods of key distribution in sensor networks. The basics of visual cryptography, allowing a secure method to split a secret visual message into pieces (shares) that can later be combined to reconstruct the secret. The fundamental techniques cryptocurrencies, as used in Bitcoin and blockchain. The basics of the new methods employed in messaging protocols such as Signal, including deniability and Diffie-Hellman key ratcheting.
In this volume, logic starts from the observation that in everyday arguments, as brought forward say by a lawyer, statements are transformed linguistically, connecting them in formal ways irrespective of their contents. Understanding such arguments as deductive situations, or "sequents" in the technical terminology, the transformations between them can be expressed as logical rules. This leads to Gentzen's calculi of derivations, presented first for positive logic and then, depending on the requirements made on the behaviour of negation, for minimal, intuitionist and classical logic. Identifying interdeducible formulas, each of these calculi gives rise to a lattice-like ordered structure. Describing the generation of filters in these structures leads to corresponding modus ponens calculi, and these turn out to be semantically complete because they express the algorithms generating semantical consequences, as obtained in Volume One of these lectures. The operators transforming derivations from one type of calculus into the other are also studied with respect to changes of the lengths of derivations, and operators eliminating defined predicate and function symbols are described expli
For propositional logic it can be decided whether a formula has a deduction from a finite set of other formulas. The present volume begins with a method to decide this for the quantified formulas of those fragments of arithmetic which express the properties of order-plus-successor and or order-plus-addition (Presburger arithmetic); it makes use of an algorithm eliminating quantifiers which, in turn, is also applied to obtain consistency proofs for these fragments. Stronger fragments of arithmetic, also containing multiplication, are sufficiently rich to express a primitive recursive encoding of terms, formulas and deductions, and this leads to Godel's theorem exhibiting statements already undecidable in these fragments. Its central idea, isolated in Tarski's fixpoint lemma, has a certain analogy with Eubulides' antinomy of the Liar, and in a non-technical chapter, accessible to a wider class of readers, this analogy is exploited for an informal discussion of undefinability and incompleteness. The technical tools required to verify the hypotheses on arithmetical representability, on the other hand, are collected in an independent presentation of recursive functions and relations.
Fuzzy set theory - and its underlying fuzzy logic - represents one of the most significant scientific and cultural paradigms to emerge in the last half-century. Its theoretical and technological promise is vast, and we are only beginning to experience its potential. Clustering is the first and most basic application of fuzzy set theory, but forms the basis of many, more sophisticated, intelligent computational models, particularly in pattern recognition, data mining, adaptive and hierarchical clustering, and classifier design.
Beyond calculus, the world of mathematics grows increasingly abstract and places new and challenging demands on those venturing into that realm. As the focus of calculus instruction has become increasingly computational, it leaves many students ill prepared for more advanced work that requires the ability to understand and construct proofs.
Mathematical Applications and Modelling is the second in the series of the yearbooks of the Association of Mathematics Educators in Singapore. The book is unique as it addresses a focused theme on mathematics education. The objective is to illustrate the diversity within the theme and present research that translates into classroom pedagogies. The book, comprising of 17 chapters, illuminates how application and modelling tasks may help develop the capacity of students to use mathematics in their present and future lives. Several renowned international researchers in the field of mathematical modelling have published their work in the book. The chapters are comprehensive and laden with evidence-based examples for both mathematics educators and classroom teachers. The book is an invaluable contribution towards the emerging field of research in mathematical applications and modelling. It is a must-read for graduate research students and mathematics educators.
Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow. Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel approach of computational fluid dynamics based on the mesh-free technique, and then improve the method using an arbitrary Lagrange Euler (ALE) formalism. They also explain how to improve the accuracy of the mesh-free integration procedure, with special emphasis on the finite volume particle method (FVPM). After describing numerical algorithms for compressible computational fluid dynamics, the text discusses the prediction of turbulent complex flows in environmental and engineering problems. The last chapter explores the modeling and numerical simulation of free surface flows, including future behaviors of glaciers. The diverse applications discussed in this book illustrate the importance of numerical methods in fluid mechanics. With research continually evolving in the field, there is no doubt that new techniques and tools will emerge to offer greater accuracy and speed in solving and analyzing even more fluid flow problems.
As the amount of information recorded and stored electronically grows ever larger, it becomes increasingly useful, if not essential, to develop better and more efficient ways to summarize and extract information from these large, multivariate data sets. The field of classification does just that-investigates sets of "objects" to see if they can be summarized into a small number of classes comprising similar objects.
This is a classic introduction to set theory in three parts. The first part gives a general introduction to set theory, suitable for undergraduates; complete proofs are given and no background in logic is required. Exercises are included, and the more difficult ones are supplied with hints. An appendix to the first part gives a more formal foundation to axiomatic set theory, supplementing the intuitive introduction given in the first part. The final part gives an introduction to modern tools of combinatorial set theory. This part contains enough material for a graduate course of one or two semesters. The subjects discussed include stationary sets, delta systems, partition relations, set mappings, measurable and real-valued measurable cardinals. Two sections give an introduction to modern results on exponentiation of singular cardinals, and certain deeper aspects of the topics are developed in advanced problems.
Concurrent systems are generally understood in terms of behavioral
notions. Models for Concurrency analyzes the subject in terms of
events and their temporal relationship rather than on global
states. It presents a comprehensive analysis of model theory
applied to concurrent protocols, and seeks to provide a theory of
concurrency that is both intuitively appealing and rigorously based
on mathematical foundations.
This latest collection of puzzles from the internationally acclaimed puzzlemaster Nob Yoshigahara covers a wide variety of puzzles from physical to visual, conceptual to mathematical. Solutions are provided in a separate section, which will help novices get on the right track, and will give seasoned aficionados a chance to check their work.
Classical and Fuzzy Concepts in Mathematical Logic and Applications provides a broad, thorough coverage of the fundamentals of two-valued logic, multivalued logic, and fuzzy logic. Exploring the parallels between classical and fuzzy mathematical logic, the book examines the use of logic in computer science, addresses questions in automatic deduction, and describes efficient computer implementation of proof techniques. Specific issues discussed include: oPropositional and predicate logic oLogic networks oLogic programming oProof of correctness oSemantics oSyntax oCompletenesss oNon-contradiction oTheorems of Herbrand and Kalman The authors consider that the teaching of logic for computer science is biased by the absence of motivations, comments, relevant and convincing examples, graphic aids, and the use of color to distinguish language and metalanguage. Classical and Fuzzy Concepts in Mathematical Logic and Applications discusses how the presence of these facts trigger a stirring, decisive insight into the understanding process. This view shapes this work, reflecting the authors' subjective balance between the scientific and pedagogic components of the textbook. Usually, problems in logic lack relevance, creating a gap between classroom learning and applications to real-life problems. The book includes a variety of application-oriented problems at the end of almost every section, including programming problems in PROLOG III. With the possibility of carrying out proofs with PROLOG III and other software packages, readers will gain a first-hand experience and thus a deeper understanding of the idea of formal proof.
This story of a highly intelligent observer of the turbulent 20th century who was intimately involved as the secretary and bodyguard to Leon Trotsky is based on extensive interviews with the subject, Jean van Heijenoort, and his family, friends, and colleagues. The author has captured the personal drama and the professional life of her protagonist--ranging from the political passion of a young intellectual to the scientific and historic work in the most abstract and yet philosophically important area of logic--in a very readable narrative.
Origami5 continues in the excellent tradition of its four previous incarnations, documenting work presented at an extraordinary series of meetings that explored the connections between origami, mathematics, science, technology, education, and other academic fields. The fifth such meeting, 5OSME (July 13-17, 2010, Singapore Management University) followed the precedent previous meetings to explore the interdisciplinary connections between origami and the real world. This book begins with a section on origami history, art, and design. It is followed by sections on origami in education and origami science, engineering, and technology, and culminates with a section on origami mathematics the pairing that inspired the original meeting. Within this one volume, you will find a broad selection of historical information, artists descriptions of their processes, various perspectives and approaches to the use of origami in education, mathematical tools for origami design, applications of folding in engineering and technology, as well as original and cutting-edge research on the mathematical underpinnings of origami.
For courses in Prealgebra. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134674189 / 9780134674186 Prealgebra Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134707648 / 9780134707648 Prealgebra 0135115795 / 9780135115794 MyLab Math with Pearson eText - Standalone Access Card - for Prealgebra
Techniques for reasoning about actions an change in the physical world is one of the classical research topics in artificial intelligence. It is motivated by the needs of autonomous robots which must be able to anticipate their immediate future, to plan their future actions, and to figure out what went wrong in case of problems. It is also motivated by the needs of common-sense reasoning for example in the understanding of natural language texts, where processes and change over time is an ever-present phenomenon. The same set of problems arises in several other areas of computing such as in conceptual modelling for data bases, and in the rapidly growing area of intelligent control. The present research monograph presents and uses a novel methodology for reasoning about actions and change. Traditional research contributions have proposed new logic variants which were only supported by episodical examples. THe work described here uses a systematic methodology for identifying the exact range of applicability of a given logic. For a number of previously proposed logics, as well as for some new ones, the present work characterizes exactly the class where it does not. This book will be a necessary source of reference for researchers in knowledge representation, cognitive robotics, and intelligent control in the years to come. Particularly because of its emphasis on a strict and systematic methodology, it can also be recommended as a textbook for graduate university courses in these areas.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations. |
![]() ![]() You may like...
Modern Aspects of Josephson Dynamics and…
Iman Askerzade, Ali Bozbey, …
Hardcover
R4,026
Discovery Miles 40 260
Unstoppable Us: Volume 2 - Why The World…
Yuval Noah Harari
Hardcover
Knowing God - The Trilogy - Knowing…
Christopher J.H. Wright
Hardcover
R1,110
Discovery Miles 11 100
Fundamentals of Functional Analysis
Semen Samsonovich Kutateladze
Hardcover
R3,042
Discovery Miles 30 420
|