![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Beginning with a short biography of Kurt Godel, "Godel's Theorem in Focus" provides the reader with a clear guide to the mechanics of Godel's proof in a format intelligible to the non-mathematician. The book moves on to explanations of the mechanics of Godel's proof and its significance for mathematical logic and the philosophy of mathematics. In the final section, S. G. Shanker presents a major new critique of Godel's theorem.
This book brings together the scattered literature associated with the seemingly unrelated regression equations (SURE) model used by econometricians and others. It focuses on the theoretical statistical results associated with the SURE model.
This book includes articles on denotational semanitcs, recursion theoretic aspects of computer science, model theory and algebra, automath and automated reasoning, stability theory, topoi and mathematics, and topoi and logic. It is intended for mathematical logicians and computer scientists.
The bestselling book that has helped millions of readers solve any problem. A must-have guide by eminent mathematician G. Polya, How to Solve It shows anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can help you attack any problem that can be reasoned out—from building a bridge to winning a game of anagrams. How to Solve It includes a heuristic dictionary with dozens of entries on how to make problems more manageable—from analogy and induction to the heuristic method of starting with a goal and working backward to something you already know. This disarmingly elementary book explains how to harness curiosity in the classroom, bring the inventive faculties of students into play, and experience the triumph of discovery. But it’s not just for the classroom. Generations of readers from all walks of life have relished Polya’s brilliantly deft instructions on stripping away irrelevancies and going straight to the heart of a problem.
The Only Undergraduate Textbook to Teach Both Classical and Virtual Knot Theory An Invitation to Knot Theory: Virtual and Classical gives advanced undergraduate students a gentle introduction to the field of virtual knot theory and mathematical research. It provides the foundation for students to research knot theory and read journal articles on their own. Each chapter includes numerous examples, problems, projects, and suggested readings from research papers. The proofs are written as simply as possible using combinatorial approaches, equivalence classes, and linear algebra. The text begins with an introduction to virtual knots and counted invariants. It then covers the normalized f-polynomial (Jones polynomial) and other skein invariants before discussing algebraic invariants, such as the quandle and biquandle. The book concludes with two applications of virtual knots: textiles and quantum computation.
Stretch your students' mathematical imaginations to their limits as they solve challenging real-world and mathematical problems that extend concepts from the Common Core State Standards for Mathematics in Advanced Common Core Math Explorations: Ratios, Proportions, and Similarity. Model the solar system, count the fish in a lake, choose the best gear for a bike ride, solve a middle school's overcrowding problem, and explore the mysteries of Fibonacci numbers and the golden ratio. Each activity comes with extensive teacher support including student handouts, discussion guides, detailed solutions, and suggestions for extending the investigations. Grades 5-8
This book gives an account of the fundamental results in geometric stability theory, a subject that has grown out of categoricity and classification theory. This approach studies the fine structure of models of stable theories, using the geometry of forking; this often achieves global results relevant to classification theory. Topics range from Zilber-Cherlin classification of infinite locally finite homogenous geometries, to regular types, their geometries, and their role in superstable theories. The structure and existence of definable groups is featured prominently, as is work by Hrushovski. The book is unique in the range and depth of material covered and will be invaluable to anyone interested in modern model theory.
Aggregation is the process of combining several numerical values into a single representative value, and an aggregation function performs this operation. These functions arise wherever aggregating information is important: applied and pure mathematics (probability, statistics, decision theory, functional equations), operations research, computer science, and many applied fields (economics and finance, pattern recognition and image processing, data fusion, etc.). This is a comprehensive, rigorous and self-contained exposition of aggregation functions. Classes of aggregation functions covered include triangular norms and conorms, copulas, means and averages, and those based on nonadditive integrals. The properties of each method, as well as their interpretation and analysis, are studied in depth, together with construction methods and practical identification methods. Special attention is given to the nature of scales on which values to be aggregated are defined (ordinal, interval, ratio, bipolar). It is an ideal introduction for graduate students and a unique resource for researchers.
Automata theory lies at the foundation of computer science, and is vital to a theoretical understanding of how computers work and what constitutes formal methods. This treatise gives a rigorous account of the topic and illuminates its real meaning by looking at the subject in a variety of ways. The first part of the book is organised around notions of rationality and recognisability. The second part deals with relations between words realised by finite automata, which not only exemplifies the automata theory but also illustrates the variety of its methods and its fields of application. Many exercises are included, ranging from those that test the reader, to those that are technical results, to those that extend ideas presented in the text. Solutions or answers to many of these are included in the book.
The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word "sentential" in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ("no," "and," "or," etc.) but not including quantifiers ("for all," "there is"). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion based on taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ("for all," and "there is") whose variables range over atomic sentences, not entities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for any probability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language.
The heart of mathematics is its elegance; the way it all fits together. Unfortunately, its beauty often eludes the vast majority of people who are intimidated by fear of the difficulty of numbers. Mathematical Elegance remedies this. Using hundreds of examples, the author presents a view of the mathematical landscape that is both accessible and fascinating. At a time of concern that American youth are bored by math, there is renewed interest in improving math skills. Mathematical Elegance stimulates students, along with those already experienced in the discipline, to explore some of the unexpected pleasures of quantitative thinking. Invoking mathematical proofs famous for their simplicity and brainteasers that are fun and illuminating, the author leaves readers feeling exuberant--as well as convinced that their IQs have been raised by ten points. A host of anecdotes about well-known mathematicians humanize and provide new insights into their lofty subjects. Recalling such classic works as Lewis Carroll's Introduction to Logic and A Mathematician Reads the Newspaper by John Allen Paulos, Mathematical Elegance will energize and delight a wide audience, ranging from intellectually curious students to the enthusiastic general reader.
Fuzzy social choice theory is useful for modeling the uncertainty and imprecision prevalent in social life yet it has been scarcely applied and studied in the social sciences. Filling this gap, Application of Fuzzy Logic to Social Choice Theory provides a comprehensive study of fuzzy social choice theory. The book explains the concept of a fuzzy maximal subset of a set of alternatives, fuzzy choice functions, the factorization of a fuzzy preference relation into the "union" (conorm) of a strict fuzzy relation and an indifference operator, fuzzy non-Arrowian results, fuzzy versions of Arrow's theorem, and Black's median voter theorem for fuzzy preferences. It examines how unambiguous and exact choices are generated by fuzzy preferences and whether exact choices induced by fuzzy preferences satisfy certain plausible rationality relations. The authors also extend known Arrowian results involving fuzzy set theory to results involving intuitionistic fuzzy sets as well as the Gibbard-Satterthwaite theorem to the case of fuzzy weak preference relations. The final chapter discusses Georgescu's degree of similarity of two fuzzy choice functions.
This book digs deeper and shows not only that quantum gravity is more than just a physical theory-describing physical aspects-but also that, in fact, it covers "it all."
This volume contains the proceedings of Simon Fest, held in honor of Simon Thomas's 60th birthday, from September 15-17, 2017, at Rutgers University, Piscataway, New Jersey. The topics covered showcase recent advances from a variety of main areas of set theory, including descriptive set theory, forcing, and inner model theory, in addition to several applications of set theory, including ergodic theory, combinatorics, and model theory.
This volume, first published in 2000, presents a classical approach to the foundations and development of the geometry of vector fields, describing vector fields in three-dimensional Euclidean space, triply-orthogonal systems and applications in mechanics. Topics covered include Pfaffian forms, systems in n-dimensional space, and foliations and their Godbillion-Vey invariant. There is much interest in the study of geometrical objects in n-dimensional Euclidean space and this volume provides a useful and comprehensive presentation.
Students become mathematical adventurers in these challenging and engaging activities designed to deepen and extend their understanding of concepts from the Common Core State Standards in Mathematics. The investigations in this book stretch students' mathematical imaginations to their limits as they solve puzzles, create stories, and explore fraction-related concepts that take them from the mathematics of ancient Greece to the outer reaches of infinity. Each activity comes with detailed support for classroom implementation including learning goals, discussion guides, detailed solutions, and suggestions for extending the investigation. There is also a free supplemental e-book offering strategies for motivation, assessment, parent communication, and suggestions for using the materials in different learning environments. Grades 5-8
Aimed at graduate students and research logicians and mathematicians, this much-awaited text covers over forty years of work on relative classification theory for non-standard models of arithmetic. With graded exercises at the end of each chapter, the book covers basic isomorphism invariants: families of types realized in a model, lattices of elementary substructures and automorphism groups. Many results involve applications of the powerful technique of minimal types due to Haim Gaifman, and some of the results are classical but have never been published in a book form before.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the tenth publication in the Perspectives in Logic series, Jens E. Fenstad takes an axiomatic approach to present a unified and coherent account of the many and various parts of general recursion theory. The main core of the book gives an account of the general theory of computations. The author then moves on to show how computation theories connect with and unify other parts of general recursion theory. Some mathematical maturity is required of the reader, who is assumed to have some acquaintance with recursion theory. This book is ideal for a second course in the subject.
The Annual European Meeting of the Association for Symbolic Logic, generally known as the Logic Colloquium, is the most prestigious annual meeting in the field. Many of the papers presented there are invited surveys of developments, and the rest of the papers are chosen to complement the invited talks. This 2007 volume includes surveys, tutorials, and selected research papers from the 2005 meeting. Highlights include three papers on different aspects of connections between model theory and algebra; a survey of major advances in combinatorial set theory; a tutorial on proof theory and modal logic; and a description of Bernay's philosophy of mathematics.
Introduction to Mathematical Modeling and Chaotic Dynamics focuses on mathematical models in natural systems, particularly ecological systems. Most of the models presented are solved using MATLAB (R). The book first covers the necessary mathematical preliminaries, including testing of stability. It then describes the modeling of systems from natural science, focusing on one- and two-dimensional continuous and discrete time models. Moving on to chaotic dynamics, the authors discuss ways to study chaos, types of chaos, and methods for detecting chaos. They also explore chaotic dynamics in single and multiple species systems. The text concludes with a brief discussion on models of mechanical systems and electronic circuits. Suitable for advanced undergraduate and graduate students, this book provides a practical understanding of how the models are used in current natural science and engineering applications. Along with a variety of exercises and solved examples, the text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.
This book argues for a view in which processes of dialogue and interaction are taken to be foundational to reasoning, logic, and meaning. This is both a continuation, and a substantial modification, of an inferentialist approach to logic. As such, the book not only provides a critical introduction to the inferentialist view, but it also provides an argument that this shift in perspective has deep and foundational consequences for how we understand the nature of logic and its relationship with meaning and reasoning. This has been upheld by several technical results, including, for example a novel approach to logical paradox and logical revision, and an account of the internal justification of logical rules. The book shows that inferentialism is greatly strengthened, such that it can answer the most stringent criticisms of the view. This leads to a view of logic that emphasizes the dynamics of reasoning, provides a novel account of the justification and normativity of logical rules, thus leading to a new, attractive approach to the foundations of logic. The book addresses readers interested in philosophy of language, philosophical and mathematical logic, theories of reasoning, and also those who actively engage in current debates involving, for example, logical revision, and the relationship between logic and reasoning, from advanced undergraduates, to professional philosophers, mathematicians, and linguists.
Although there are some books dealing with algebraic theory of automata, their contents consist mainly of Krohn-Rhodes theory and related topics. The topics in the present book are rather different. For example, automorphism groups of automata and the partially ordered sets of automata are systematically discussed. Moreover, some operations on languages and special classes of regular languages associated with deterministic and nondeterministic directable automata are dealt with. The book is self-contained and hence does not require any knowledge of automata and formal languages.
This book was written to serve as an introduction to logic, with in each chapter - if applicable - special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Goedel's Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sergio Argolo
|
![]() ![]() You may like...
Civil Engineering and Urban Research SET…
Hazem Samih Mohamed, Jinfang Hou
Hardcover
R6,795
Discovery Miles 67 950
Cybernetics, Cognition and Machine…
Vinit Kumar Gunjan, P.N Suganthan, …
Hardcover
R5,653
Discovery Miles 56 530
Sustainability in the Chemistry…
Catherine Middlecamp, Andrew Jorgensen
Hardcover
R5,814
Discovery Miles 58 140
Approaches and Applications of Deep…
Noor Zaman, Loveleen Gaur, …
Hardcover
R8,638
Discovery Miles 86 380
Multi-disciplinary Sustainable…
P. N. Tekwani, M. Bhavsar, …
Paperback
R1,534
Discovery Miles 15 340
|