![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tubingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.
As a student moves from basic calculus courses into upper-division courses in linear and abstract algebra, real and complex analysis, number theory, topology, and so on, a "bridge" course can help ensure a smooth transition. Introduction to Mathematical Structures and Proofs is a textbook intended for such a course, or for self-study. This book introduces an array of fundamental mathematical structures. It also explores the delicate balance of intuition and rigor-and the flexible thinking-required to prove a nontrivial result. In short, this book seeks to enhance the mathematical maturity of the reader. The new material in this second edition includes a section on graph theory, several new sections on number theory (including primitive roots, with an application to card-shuffling), and a brief introduction to the complex numbers (including a section on the arithmetic of the Gaussian integers). Solutions for even numbered exercises are available on springer.com for instructors adopting the text for a course.
This book exclusively deals with the study of almost convergence and statistical convergence of double sequences. The notion of “almost convergence†is perhaps the most useful notion in order to obtain a weak limit of a bounded non-convergent sequence. There is another notion of convergence known as the “statistical convergenceâ€, introduced by H. Fast, which is an extension of the usual concept of sequential limits. This concept arises as an example of “convergence in density†which is also studied as a summability method. Even unbounded sequences can be dealt with by using this method. The book also discusses the applications of these non-matrix methods in approximation theory. Written in a self-contained style, the book discusses in detail the methods of almost convergence and statistical convergence for double sequences along with applications and suitable examples. The last chapter is devoted to the study convergence of double series and describes various convergence tests analogous to those of single sequences. In addition to applications in approximation theory, the results are expected to find application in many other areas of pure and applied mathematics such as mathematical analysis, probability, fixed point theory and statistics.
In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.
An ontology is a formal description of concepts and relationships that can exist for a community of human and/or machine agents. The notion of ontologies is crucial for the purpose of enabling knowledge sharing and reuse. The Handbook on Ontologies provides a comprehensive overview of the current status and future prospectives of the field of ontologies considering ontology languages, ontology engineering methods, example ontologies, infrastructures and technologies for ontologies, and how to bring this all into ontology-based infrastructures and applications that are among the best of their kind. The field of ontologies has tremendously developed and grown in the five years since the first edition of the "Handbook on Ontologies". Therefore, its revision includes 21 completely new chapters as well as a major re-working of 15 chapters transferred to this second edition.
Edited in collaboration with FoLLI, the Association of Logic, Language and Information this book constitutes the refereed proceedings of the 23rd Workshop on Logic, Language, Information and Communication, WoLLIC 2016, held in Puebla, Mexico, in August 2016.The 23 contributed papers, presented together with 9 invited lectures and tutorials, were carefully reviewed and selected from 33 submissions. The focus of the workshop is to provide a forum on inter-disciplinary research involving formal logic, computing and programming theory, and natural language and reasoning.
The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do come into opposition and can be used in different contexts. The goal here is to clarify the multi fold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.
This book is based on two premises: one cannot understand philosophy of mathematics without understanding mathematics and one cannot understand mathematics without doing mathematics. It draws readers into philosophy of mathematics by having them do mathematics. It offers 298 exercises, covering philosophically important material, presented in a philosophically informed way. The exercises give readers opportunities to recreate some mathematics that will illuminate important readings in philosophy of mathematics. Topics include primitive recursive arithmetic, Peano arithmetic, Gödel's theorems, interpretability, the hierarchy of sets, Frege arithmetic and intuitionist sentential logic. The book is intended for readers who understand basic properties of the natural and real numbers and have some background in formal logic.
This book contains the proceedings of the 23rd International Workshop on Operator Theory and its Applications (IWOTA 2012), which was held at the University of New South Wales (Sydney, Australia) from 16 July to 20 July 2012. It includes twelve articles presenting both surveys of current research in operator theory and original results.
This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.
This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, reactive products, reactive deontic logic and reactive preferential structures. Reactive Kripke semantics is the next step in the evolution of possible world semantics for non-classical logics, and this book, written by one of the leading authorities in the field, is essential reading for graduate students and researchers in applied logic, and it offers many research opportunities for PhD students.
This book brings together contributions by leading researchers in computational complexity theory written in honor of Somenath Biswas on the occasion of his sixtieth birthday. They discuss current trends and exciting developments in this flourishing area of research and offer fresh perspectives on various aspects of complexity theory. The topics covered include arithmetic circuit complexity, lower bounds and polynomial identity testing, the isomorphism conjecture, space-bounded computation, graph isomorphism, resolution and proof complexity, entropy and randomness. Several chapters have a tutorial flavor. The aim is to make recent research in these topics accessible to graduate students and senior undergraduates in computer science and mathematics. It can also be useful as a resource for teaching advanced level courses in computational complexity.
This book presents four mathematical essays which explore the foundations of mathematics and related topics ranging from philosophy and logic to modern computer mathematics. While connected to the historical evolution of these concepts, the essays place strong emphasis on developments still to come. The book originated in a 2002 symposium celebrating the work of Bruno Buchberger, Professor of Computer Mathematics at Johannes Kepler University, Linz, Austria, on the occasion of his 60th birthday. Among many other accomplishments, Professor Buchberger in 1985 was the founding editor of the Journal of Symbolic Computation; the founder of the Research Institute for Symbolic Computation (RISC) and its chairman from 1987-2000; the founder in 1990 of the Softwarepark Hagenberg, Austria, and since then its director. More than a decade in the making, Mathematics, Computer Science and Logic - A Never Ending Story includes essays by leading authorities, on such topics as mathematical foundations from the perspective of computer verification; a symbolic-computational philosophy and methodology for mathematics; the role of logic and algebra in software engineering; and new directions in the foundations of mathematics. These inspiring essays invite general, mathematically interested readers to share state-of-the-art ideas which advance the never ending story of mathematics, computer science and logic. Mathematics, Computer Science and Logic - A Never Ending Story is edited by Professor Peter Paule, Bruno Buchberger's successor as director of the Research Institute for Symbolic Computation.
This is a text in methods of applied statistics for researchers who design and conduct experiments, perform statistical inference, and write technical reports. These research activities rely on an adequate knowledge of applied statistics. The reader both builds on basic statistics skills and learns to apply it to applicable scenarios without over-emphasis on the technical aspects. Demonstrations are a very important part of this text. Mathematical expressions are exhibited only if they are defined or intuitively comprehensible. This text may be used as a self review guidebook for applied researchers or as an introductory statistical methods textbook for students not majoring in statistics.​ Discussion includes essential probability models, inference of means, proportions, correlations and regressions, methods for censored survival time data analysis, and sample size determination. The author has over twenty years of experience on applying statistical methods to study design and data analysis in collaborative medical research setting as well as on teaching. He received his PhD from University of Southern California Department of Preventive Medicine, received a post-doctoral training at Harvard Department of Biostatistics, has held faculty appointments at UCLA School of Medicine and Harvard Medical School, and currently a biostatistics faculty member at Massachusetts General Hospital and Harvard Medical School in Boston, Massachusetts, USA.Â
Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating along expanding characteristics after having hit a discontinuity, exponential amplification of truncation errors in the presence of accretive source terms... This book aims at presenting rigorous derivations of different, sometimes called well-balanced, numerical schemes which succeed in reconciling high accuracy with a stronger robustness even in the aforementioned accretive contexts. It is divided into two parts: one dealing with hyperbolic systems of balance laws, such as arising from quasi-one dimensional nozzle flow computations, multiphase WKB approximation of linear Schroedinger equations, or gravitational Navier-Stokes systems. Stability results for viscosity solutions of onedimensional balance laws are sketched. The other being entirely devoted to the treatment of weakly nonlinear kinetic equations in the discrete ordinate approximation, such as the ones of radiative transfer, chemotaxis dynamics, semiconductor conduction, spray dynamics or linearized Boltzmann models. "Caseology" is one of the main techniques used in these derivations. Lagrangian techniques for filtration equations are evoked too. Two-dimensional methods are studied in the context of non-degenerate semiconductor models.
Wondrous One Sheet Origami is a how-to book full of beautiful origami designs covering a wide range of folding levels from simple to high intermediate, with more emphasis on the latter. The book is meant for audiences 12 years of age and above, and children folding at higher than age level. Most of the designs are flat and suitable for mounting on cards or framing as gifts. Features * Richly illustrated full-color book with clear, crisp diagrams following international standard, and an abundance of photographs of finished models * Select designs hand-picked by the author based on social media responses * Most of the designs incorporate color-change, a technique showing both sides of paper for enhanced beauty
Fundamentals of Linear Algebra is like no other book on the subject. By following a natural and unified approach to the subject it has, in less than 250 pages, achieved a more complete coverage of the subject than books with more than twice as many pages. For example, the textbooks in use in the United States prove the existence of a basis only for finite dimensional vector spaces. This book proves it for any given vector space. With his experience in algebraic geometry and commutative algebra, the author defines the dimension of a vector space as its Krull dimension. By doing so, most of the facts about bases when the dimension is finite, are trivial consequences of this definition. To name one, the replacement theorem is no longer needed. It becomes obvious that any two bases of a finite dimensional vector space contain the same number of vectors. Moreover, this definition of the dimension works equally well when the geometric objects are nonlinear. Features: Presents theories and applications in an attempt to raise expectations and outcomes The subject of linear algebra is presented over arbitrary fields Includes many non-trivial examples which address real-world problems
The Art of Proving Binomial Identities accomplishes two goals: (1) It provides a unified treatment of the binomial coefficients, and (2) Brings together much of the undergraduate mathematics curriculum via one theme (the binomial coefficients). The binomial coefficients arise in a variety of areas of mathematics: combinatorics, of course, but also basic algebra (binomial theorem), infinite series (Newton's binomial series), differentiation (Leibniz's generalized product rule), special functions (the beta and gamma functions), probability, statistics, number theory, finite difference calculus, algorithm analysis, and even statistical mechanics. The book is very suitable for advanced undergraduates or beginning graduate students and includes various exercises asking them to prove identities. Students will find that the text and notes at the end of the chapters encourages them to look at binomial coefficients from different angles. With this learning experience, students will be able to understand binomial coefficients in a new way. Features: Provides a unified treatment of many of the techniques for proving binomial coefficient identities. Ties together several of the courses in the undergraduate mathematics curriculum via a single theme. A textbook for a capstone or senior seminar course in mathematics. Contains several results by the author on proof techniques for binomial coefficients that are not well-known. Ideal for self-study, it contains a large number of exercises at the end of each chapter, with hints or solutions for every exercise at the end of the book.
Exploring Geometry, Second Edition promotes student engagement with the beautiful ideas of geometry. Every major concept is introduced in its historical context and connects the idea with real-life. A system of experimentation followed by rigorous explanation and proof is central. Exploratory projects play an integral role in this text. Students develop a better sense of how to prove a result and visualize connections between statements, making these connections real. They develop the intuition needed to conjecture a theorem and devise a proof of what they have observed. Features: Second edition of a successful textbook for the first undergraduate course Every major concept is introduced in its historical context and connects the idea with real life Focuses on experimentation Projects help enhance student learning All major software programs can be used; free software from author
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twelfth publication in the Lecture Notes in Logic series, collects the proceedings of the European Summer Meeting of the Association of Symbolic Logic, held at the University of the Basque Country, San Sebastian in July 1996. The main topics were model theory, proof theory, recursion and complexity theory, models of arithmetic, logic for artificial intelligence, formal semantics of natural language, and philosophy of contemporary logic. The volume includes eleven papers from pre-eminent researchers in mathematical logic.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the second publication in the Lecture Notes in Logic series, is the proceedings of the Association for Symbolic Logic meeting held in Helsinki, Finland, in July 1990. It contains eighteen papers by leading researchers, covering all fields of mathematical logic from the philosophy of mathematics, through model theory, proof theory, recursion theory, and set theory, to the connections of logic to computer science. The articles published here are still widely cited and continue to provide ideas for ongoing research projects.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the first publication in the Lecture Notes in Logic series, Shoenfield gives a clear and focused introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. This introduction is an ideal instrument for teaching and self-study that prepares the reader for the study of advanced monographs and the current literature on recursion theory.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the eighth publication in the Perspectives in Logic series, brings together several directions of work in model theory between the late 1950s and early 1980s. It contains expository papers by pre-eminent researchers. Part I provides an introduction to the subject as a whole, as well as to the basic theory and examples. The rest of the book addresses finitary languages with additional quantifiers, infinitary languages, second-order logic, logics of topology and analysis, and advanced topics in abstract model theory. Many chapters can be read independently.
Fascinating connections exist between group theory and automata theory, and a wide variety of them are discussed in this text. Automata can be used in group theory to encode complexity, to represent aspects of underlying geometry on a space on which a group acts, and to provide efficient algorithms for practical computation. There are also many applications in geometric group theory. The authors provide background material in each of these related areas, as well as exploring the connections along a number of strands that lead to the forefront of current research in geometric group theory. Examples studied in detail include hyperbolic groups, Euclidean groups, braid groups, Coxeter groups, Artin groups, and automata groups such as the Grigorchuk group. This book will be a convenient reference point for established mathematicians who need to understand background material for applications, and can serve as a textbook for research students in (geometric) group theory.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the fifth publication in the Perspectives in Logic series, studies set-theoretic independence results (independence from the usual set-theoretic ZFC axioms), in particular for problems on the continuum. The author gives a complete presentation of the theory of proper forcing and its relatives, starting from the beginning and avoiding the metamathematical considerations. No prior knowledge of forcing is required. The book will enable a researcher interested in an independence result of the appropriate kind to have much of the work done for them, thereby allowing them to quote general results. |
![]() ![]() You may like...
Metal Halide Perovskites for Generation…
Juan P. Martinez-Pastor, Pablo P. Boix, …
Paperback
R5,231
Discovery Miles 52 310
Energy Policies for Sustainable…
Nnaemeka Vincent Emodi
Hardcover
Global Perspectives on Underutilized…
Munir Ozturk, Khalid Rehman Hakeem, …
Hardcover
R6,789
Discovery Miles 67 890
Working with Dynamic Crop Models…
Daniel Wallach, David Makowski, …
Hardcover
|