![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This volume presents the state of the art in the algebraic investigation into substructural logics. It features papers from the workshop AsubL (Algebra & Substructural Logics - Take 6). Held at the University of Cagliari, Italy, this event is part of the framework of the Horizon 2020 Project SYSMICS: SYntax meets Semantics: Methods, Interactions, and Connections in Substructural logics. Substructural logics are usually formulated as Gentzen systems that lack one or more structural rules. They have been intensively studied over the past two decades by logicians of various persuasions. These researchers include mathematicians, philosophers, linguists, and computer scientists. Substructural logics are applicable to the mathematical investigation of such processes as resource-conscious reasoning, approximate reasoning, type-theoretical grammar, and other focal notions in computer science. They also apply to epistemology, economics, and linguistics. The recourse to algebraic methods -- or, better, the fecund interplay of algebra and proof theory -- has proved useful in providing a unifying framework for these investigations. The AsubL series of conferences, in particular, has played an important role in these developments. This collection will appeal to students and researchers with an interest in substructural logics, abstract algebraic logic, residuated lattices, proof theory, universal algebra, and logical semantics.
This monograph offers a critical introduction to current theories of how scientific models represent their target systems. Representation is important because it allows scientists to study a model to discover features of reality. The authors provide a map of the conceptual landscape surrounding the issue of scientific representation, arguing that it consists of multiple intertwined problems. They provide an encyclopaedic overview of existing attempts to answer these questions, and they assess their strengths and weaknesses. The book also presents a comprehensive statement of their alternative proposal, the DEKI account of representation, which they have developed over the last few years. They show how the account works in the case of material as well as non-material models; how it accommodates the use of mathematics in scientific modelling; and how it sheds light on the relation between representation in science and art. The issue of representation has generated a sizeable literature, which has been growing fast in particular over the last decade. This makes it hard for novices to get a handle on the topic because so far there is no book-length introduction that would guide them through the discussion. Likewise, researchers may require a comprehensive review that they can refer to for critical evaluations. This book meets the needs of both groups.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the third publication in the Lecture Notes in Logic series, Mitchell and Steel construct an inner model with a Woodin cardinal and develop its fine structure theory. This work builds upon the existing theory of a model of the form L[E], where E is a coherent sequence of extenders, and relies upon the fine structure theory of L[E] models with strong cardinals, and the theory of iteration trees and 'backgrounded' L[E] models with Woodin cardinals. This work is what results when fine structure meets iteration trees.
Assuming no previous study in logic, this informal yet rigorous text covers the material of a standard undergraduate first course in mathematical logic, using natural deduction and leading up to the completeness theorem for first-order logic. At each stage of the text, the reader is given an intuition based on standard mathematical practice, which is subsequently developed with clean formal mathematics. Alongside the practical examples, readers learn what can and can't be calculated; for example the correctness of a derivation proving a given sequent can be tested mechanically, but there is no general mechanical test for the existence of a derivation proving the given sequent. The undecidability results are proved rigorously in an optional final chapter, assuming Matiyasevich's theorem characterising the computably enumerable relations. Rigorous proofs of the adequacy and completeness proofs of the relevant logics are provided, with careful attention to the languages involved. Optional sections discuss the classification of mathematical structures by first-order theories; the required theory of cardinality is developed from scratch. Throughout the book there are notes on historical aspects of the material, and connections with linguistics and computer science, and the discussion of syntax and semantics is influenced by modern linguistic approaches. Two basic themes in recent cognitive science studies of actual human reasoning are also introduced. Including extensive exercises and selected solutions, this text is ideal for students in Logic, Mathematics, Philosophy, and Computer Science.
This exploration of a selection of fundamental topics and general purpose tools provides a roadmap to undergraduate students who yearn for a deeper dive into many of the concepts and ideas they have been encountering in their classes whether their motivation is pure curiosity or preparation for graduate studies. The topics intersect a wide range of areas encompassing both pure and applied mathematics. The emphasis and style of the book are motivated by the goal of developing self-reliance and independent mathematical thought. Mathematics requires both intuition and common sense as well as rigorous, formal argumentation. This book attempts to showcase both, simultaneously encouraging readers to develop their own insights and understanding and the adoption of proof writing skills. The most satisfying proofs/arguments are fully rigorous and completely intuitive at the same time.
This book on proof theory centers around the legacy of Kurt Schutte and its current impact on the subject. Schutte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schutte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound 0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi for impredicative theories. Schutte had a keen interest in advancing ordinal analysis to ever stronger theories and was still working on some of the strongest systems in his eighties. The articles in this volume from leading experts close to his research, show the enduring influence of his work in modern proof theory. They range from eye witness accounts of his scientific life to developments at the current research frontier, including papers by Schutte himself that have never been published before.
Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems contains computer-code examples for the development of genetic algorithm systems - compiling them from an array of practitioners in the field. Each contribution of this singular resource includes: unique code segments documentation description of the operations performed rationale for the chosen approach problems the code overcomes or addresses Practical Handbook of Genetic Algorithms, Volume 3: Complex Coding Systems complements the first two volumes in the series by offering examples of computer code. The first two volumes dealt with new research and an overview of the types of applications that could be taken with GAs. This volume differs from its predecessors by specifically concentrating on specific functions in genetic algorithms, serving as the only compilation of useful and usable computer code in the field.
This volume comprises an imaginative collection of pieces created in tribute to Martin Gardner. Perhaps best known for writing Scientific American's "Mathematical Games" column for years, Gardner used his personal exuberance and fascination with puzzles and magic to entice a wide range of readers into a world of mathematical discovery. This tribute therefore contains pieces as widely varied as Gardner's own interests, ranging from limericks to lengthy treatises, from mathematical journal articles to personal stories. This book makes a charming and unusual addition to any personal library. Selected papers: - The Odyssey of the Figure Eight Puzzle by Stewart Coffin - Block-Packing Jambalaya by Bill Cutler - O'Beirne's Hexiamond by Richard K. Guy - Biblical Ladders by Donald E. Knuth - Three Limericks: On Space, Time and Speed by Tim Rowett.
This book addresses mechanisms for reducing model heterogeneity induced by the absence of explicit semantics expression in the formal techniques used to specify design models. More precisely, it highlights the advances in handling both implicit and explicit semantics in formal system developments, and discusses different contributions expressing different views and perceptions on the implicit and explicit semantics. The book is based on the discussions at the Shonan meeting on this topic held in 2016, and includes contributions from the participants summarising their perspectives on the problem and offering solutions. Divided into 5 parts: domain modelling, knowledge-based modelling, proof-based modelling, assurance cases, and refinement-based modelling, and offers inspiration for researchers and practitioners in the fields of formal methods, system and software engineering, domain knowledge modelling, requirement analysis, and explicit and implicit semantics of modelling languages.
"Contains the contributions of 45 internationally distinguished mathematicians covering all areas of approximation theory-written in honor of the pioneering work of Arun K. Varma to the fields of interpolation and approximation of functions, including Birhoff interpolation and approximation by spline functions."
This book presents a set theoretical development for the foundations of the theory of atomic and finitely supported structures. It analyzes whether a classical result can be adequately reformulated by replacing a 'non-atomic structure' with an 'atomic, finitely supported structure'. It also presents many specific properties, such as finiteness, cardinality, connectivity, fixed point, order and uniformity, of finitely supported atomic structures that do not have non-atomic correspondents. In the framework of finitely supported sets, the authors analyze the consistency of various forms of choice and related results. They introduce and study the notion of 'cardinality' by presenting various order and arithmetic properties. Finitely supported partially ordered sets, chain complete sets, lattices and Galois connections are studied, and new fixed point, calculability and approximation properties are presented. In this framework, the authors study the finitely supported L-fuzzy subsets of a finitely supported set and the finitely supported fuzzy subgroups of a finitely supported group. Several pairwise non-equivalent definitions for the notion of 'infinity' (Dedekind infinity, Mostowski infinity, Kuratowski infinity, Tarski infinity, ascending infinity) are introduced, compared and studied in the new framework. Relevant examples of sets that satisfy some forms of infinity while not satisfying others are provided. Uniformly supported sets are analyzed, and certain surprising properties are presented. Finally, some variations of the finite support requirement are discussed. The book will be of value to researchers in the foundations of set theory, algebra and logic.
The authors explain in this work a new approach to observing and controlling linear systems whose inputs and outputs are not fixed in advance. They cover a class of linear time-invariant state/signal system that is general enough to include most of the standard classes of linear time-invariant dynamical systems, but simple enough that it is easy to understand the fundamental principles. They begin by explaining the basic theory of finite-dimensional and bounded systems in a way suitable for graduate courses in systems theory and control. They then proceed to the more advanced infinite-dimensional setting, opening up new ways for researchers to study distributed parameter systems, including linear port-Hamiltonian systems and boundary triplets. They include the general non-passive part of the theory in continuous and discrete time, and provide a short introduction to the passive situation. Numerous examples from circuit theory are used to illustrate the theory.
A comprehensive and user-friendly guide to the use of logic in mathematical reasoning Mathematical Logic presents a comprehensive introduction to formal methods of logic and their use as a reliable tool for deductive reasoning. With its user-friendly approach, this book successfully equips readers with the key concepts and methods for formulating valid mathematical arguments that can be used to uncover truths across diverse areas of study such as mathematics, computer science, and philosophy. The book develops the logical tools for writing proofs by guiding readers through both the established "Hilbert" style of proof writing, as well as the "equational" style that is emerging in computer science and engineering applications. Chapters have been organized into the two topical areas of Boolean logic and predicate logic. Techniques situated outside formal logic are applied to illustrate and demonstrate significant facts regarding the power and limitations of logic, such as: Logic can certify truths and only truths. Logic can certify all absolute truths (completeness theorems of Post and Godel). Logic cannot certify all "conditional" truths, such as those that are specific to the Peano arithmetic. Therefore, logic has some serious limitations, as shown through Godel's incompleteness theorem. Numerous examples and problem sets are provided throughout the text, further facilitating readers' understanding of the capabilities of logic to discover mathematical truths. In addition, an extensive appendix introduces Tarski semantics and proceeds with detailed proofs of completeness and first incompleteness theorems, while also providing a self-contained introduction to thetheory of computability. With its thorough scope of coverage and accessible style, Mathematical Logic is an ideal book for courses in mathematics, computer science, and philosophy at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who wish to learn how to use logic in their everyday work.
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Groebner bases) and geometry (via quiver theory). Groebner bases serve as effective models for computation in algebras of various types. Although the theory of Groebner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced - with big impact - in the 1990s. Divided into two parts, the book first discusses the theory of Groebner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Groebner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.
Presents a novel approach to set theory that is entirely operational. This approach avoids the existential axioms associated with traditional Zermelo-Fraenkel set theory, and provides both a foundation for set theory and a practical approach to learning the subject.
The International research Library of Philosophy collects in book form a wide range of important and influential essays in philosophy, drawn predominantly from English-language journals. Each volume in the library deals with a field of enquiry which has received significant attention in philosophy in the last 25 years and is edited by a philosopher noted in that field.
All current methods of secure communication such as public-key cryptography can eventually be broken by faster computing. At the interface of physics and computer science lies a powerful solution for secure communications: quantum cryptography. Because eavesdropping changes the physical nature of the information, users in a quantum exchange can easily detect eavesdroppers. This allows for totally secure random key distribution, a central requirement for use of the one-time pad. Since the one-time pad is theoretically proven to be undecipherable, quantum cryptography is the key to perfect secrecy. Quantum Communications and Cryptography is the first comprehensive review of the past, present, and potential developments in this dynamic field. Leading expert contributors from around the world discuss the scientific foundations, experimental and theoretical developments, and cutting-edge technical and engineering advances in quantum communications and cryptography. The book describes the engineering principles and practical implementations in a real-world metropolitan network as well as physical principles and experimental results of such technologies as entanglement swapping and quantum teleportation. It also offers the first detailed treatment of quantum information processing with continuous variables. Technologies include both free-space and fiber-based communications systems along with the necessary protocols and information processing approaches. Bridging the gap between physics and engineering, Quantum Communications and Cryptography supplies a springboard for further developments and breakthroughs in this rapidly growing area.
Since the birth of rational homotopy theory, the possibility of extending the Quillen approach - in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version. In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions. This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.
The major focus of this book is measurement and categorization in set theory, most notably on results dealing with asymmetry. The authors delve into the study of a deep symmetry between the concept of Lebesque measurability and the Baire property, and obtain findings on the structure of the real line.
MATRIX is Australia's international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the eight programs held at MATRIX in 2018: - Non-Equilibrium Systems and Special Functions - Algebraic Geometry, Approximation and Optimisation - On the Frontiers of High Dimensional Computation - Month of Mathematical Biology - Dynamics, Foliations, and Geometry In Dimension 3 - Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type - Functional Data Analysis and Beyond - Geometric and Categorical Representation Theory The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
A compact and easily accessible book, it guides the reader in unravelling the apparent mysteries found in doing mathematical proofs. Simply written, it introduces the art and science of proving mathematical theorems and propositions and equips students with the skill required to tackle the task of proving mathematical assertions. Theoremus - A Student's Guide to Mathematical Proofs is divided into two parts. Part 1 provides a grounding in the notion of mathematical assertions, arguments and fallacies and Part 2, presents lessons learned in action by applying them into the study of logic itself. The book supplies plenty of examples and figures, gives some historical background on personalities that gave rise to the topic and provides reflective problems to try and solve. The author aims to provide the reader with the confidence to take a deep dive into some more advanced work in mathematics or logic.
This volume is a collection of essays in honour of Professor Mohammad Ardeshir. It examines topics which, in one way or another, are connected to the various aspects of his multidisciplinary research interests. Based on this criterion, the book is divided into three general categories. The first category includes papers on non-classical logics, including intuitionistic logic, constructive logic, basic logic, and substructural logic. The second category is made up of papers discussing issues in the contemporary philosophy of mathematics and logic. The third category contains papers on Avicenna's logic and philosophy. Mohammad Ardeshir is a full professor of mathematical logic at the Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran, where he has taught generations of students for around a quarter century. Mohammad Ardeshir is known in the first place for his prominent works in basic logic and constructive mathematics. His areas of interest are however much broader and include topics in intuitionistic philosophy of mathematics and Arabic philosophy of logic and mathematics. In addition to numerous research articles in leading international journals, Ardeshir is the author of a highly praised Persian textbook in mathematical logic. Partly through his writings and translations, the school of mathematical intuitionism was introduced to the Iranian academic community.
Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.
Splines are the fundamental tools for fitting curves and surfaces in computer-aided design and computer graphics. This volume presents a practical introduction to computing spline functions and takes the elementary and directly available approach of using explicit and easily evaluated forms of the spline interpolants. Spath outlines the conditions under which splines can be best applied and integrates into his presentation numerous formulas and algorithms to emphasize his concepts. He also includes FORTRAN-77 subroutines which can be applied to the abundant problems illustrated and treated in the book which in turn allows the reader to assess the performance of various spline interpolants based on the configuration of the data. A program disc is available to supplement the text and there is also a companion volume, One Dimensional Spline Interpolation Algorithms.
This textbook offers a detailed introduction to the methodology and applications of sequent calculi in propositional logic. Unlike other texts concerned with proof theory, emphasis is placed on illustrating how to use sequent calculi to prove a wide range of metatheoretical results. The presentation is elementary and self-contained, with all technical details both formally stated and also informally explained. Numerous proofs are worked through to demonstrate methods of proving important results, such as the cut-elimination theorem, completeness, decidability, and interpolation. Other proofs are presented with portions left as exercises for readers, allowing them to practice techniques of sequent calculus. After a brief introduction to classical propositional logic, the text explores three variants of sequent calculus and their features and applications. The remaining chapters then show how sequent calculi can be extended, modified, and applied to non-classical logics, including modal, intuitionistic, substructural, and many-valued logics. Sequents and Trees is suitable for graduate and advanced undergraduate students in logic taking courses on proof theory and its application to non-classical logics. It will also be of interest to researchers in computer science and philosophers. |
![]() ![]() You may like...
A Modern Guide to the Economics of Crime
Paolo Buonanno, Paolo Vanin, …
Hardcover
R4,812
Discovery Miles 48 120
How To Think And Reason In…
Frederick C. V. N. Fourie, Philippe Burger
Paperback
![]()
The Future - More Than 80 Key Trends For…
Dion Chang, Bronwyn Williams, …
Paperback
The Learning Economy and the Economics…
Bengt-Ake Lundvall
Hardcover
|