![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
This best-selling text by John Taylor, now released in its second edition, introduces the study of uncertainties to lower division science students. Assuming no prior knowledge, the author introduces error analysis through the use of familiar examples ranging from carpentry to well-known historic experiments. Pertinent worked examples, simple exercises throughout the text, and numerous chapter-ending problems combine to make the book ideal for use in physics, chemistry and engineering lab courses. This book has been translated into nine languages and has more adoptions than we can count.
Origami5 continues in the excellent tradition of its four previous incarnations, documenting work presented at an extraordinary series of meetings that explored the connections between origami, mathematics, science, technology, education, and other academic fields. The fifth such meeting, 5OSME (July 13-17, 2010, Singapore Management University) followed the precedent previous meetings to explore the interdisciplinary connections between origami and the real world. This book begins with a section on origami history, art, and design. It is followed by sections on origami in education and origami science, engineering, and technology, and culminates with a section on origami mathematics the pairing that inspired the original meeting. Within this one volume, you will find a broad selection of historical information, artists descriptions of their processes, various perspectives and approaches to the use of origami in education, mathematical tools for origami design, applications of folding in engineering and technology, as well as original and cutting-edge research on the mathematical underpinnings of origami.
"Attempts to unite the fields of mathematical logic and general algebra. Presents a collection of refereed papers inspired by the International Conference on Logic and Algebra held in Siena, Italy, in honor of the late Italian mathematician Roberto Magari, a leading force in the blossoming of research in mathematical logic in Italy since the 1960s."
This revised and considerably expanded 2nd edition brings together a wide range of topics, including modal, tense, conditional, intuitionist, many-valued, paraconsistent, relevant, and fuzzy logics. Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Intended for specialists in functional analysis and stability theory, this work presents a systematic exposition of estimations for norms of operator-valued functions, and applies the estimates to spectrum perturbations of linear operators and stability theory. The author demonstrates his own approach to spectrum perturbations.
Principles of Scientific Methods focuses on the fundamental principles behind scientific methods. The book refers to "science" in a broad sense, including natural science, physics, mathematics, statistics, social science, political science, and engineering science. A principle is often abstract and has broad applicability while a method is usually concrete and specific. The author uses many concrete examples to explain principles and presents analogies to connect different methods or problems to arrive at a general principle or a common notion. He mainly discusses a particular method to address the great idea behind the method, not the method itself. The book shows how the principles are not only applicable to scientific research but also to our daily lives. The author explains how scientific methods are used for understanding how and why things happen, making predictions, and learning how to prevent mistakes and solve problems. Studying the principles of scientific methods is to think about thinking and to enlighten our understanding of scientific research. Scientific principles are the foundation of scientific methods. In this book, you'll see how the principles reveal the big ideas behind our scientific discoveries and reflect the fundamental beliefs and wisdoms of scientists. The principles make the scientific methods coherent and constitute the source of creativity.
This introduction to mathematical logic takes G del's incompleteness theorem as a starting point. It goes beyond a standard text book and should interest everyone from mathematicians to philosophers and general readers who wish to understand the foundations and limitations of modern mathematics.
This richly illustrated book provides step-by-step instructions for the construction of over 30 different modular origami structures. The author describes basic folding techniques required to construct themodules that are used as building blocks to construct complex ornamental models. The diagrams are clear, crisp, and easy to follow, and are accompanied by inspiring color photographs. Additional tips encourage the reader to design their own original creations. Advance Praise for Marvelous Modular Origami "A must-have for any modular origami polyhedra enthusiast." -Rona Gurkewitz, co-author of Multimodular Origami Polyhedra "The models are paper folding in its purest form. They range from simple Sonobe to floral and geometrical constructions. All are eye-catching and satisfying to fold, and the finished constructions are pleasing to behold. Also included are short sections on the mathematics behind the shapes and optimum color choices." -David Petty, author of Origami A-B-C "In this colorful book, you'll find wonderful original origami modular creations. Meenakshi's clear instructions and helpful hints will have you zipping through these modules as well as improvising your own." -Rachel Katz, co-author of FUN FOLDS: Language Learning Through Paper Folding "Marvelous Modular Origami is a colorful addition to the literature of mathematical origami." -Florence Temko, author of many origami and other craft books
This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2012 Asian Initiative for Infinity Logic Summer School. The major topics cover set-theoretic forcing, higher recursion theory, and applications of set theory to C*-algebra. This volume offers a wide spectrum of ideas and techniques introduced in contemporary research in the field of mathematical logic to students, researchers and mathematicians.
This handsome book is aimed towards those with an intermediate skill level, but the origami basics included at the start of the book make it accessible to beginners. A number of beautiful models are offered, ranging from cubes to prisms to dodecahedra. As with the author's two previous books, Origami Inspirations provides step-by-step instructions and color distribution suggestions to create the more than 30 intricate designs presented. The book also includes a chapter featuring designs by origami artists from around the world, and these projects provide a happy complement to the author's own exciting inspirations in the rest of the book.
For courses in Prealgebra. The Martin-Gay principle: Every student can succeed Elayn Martin-Gay's student-centric approach is woven seamlessly throughout her texts and MyLab courses, giving students the optimal amount of support through effective video resources, an accessible writing style, and study skills support built into the program. Elayn's legacy of innovations that support student success include Chapter Test Prep videos and a Video Organizer note-taking guide. Expanded resources in the latest revision bring even more updates to her program, all shaped by her focus on the student - a perspective that has made her course materials beloved by students and instructors alike. The Martin-Gay series offers market-leading content written by a preeminent author-educator, tightly integrated with the #1 choice in digital learning: MyLab Math. Also available with MyLab Math By combining trusted author content with digital tools and a flexible platform, MyLab personalizes the learning experience and improves results for each student. Bringing Elayn Martin-Gay's voice and approach into the MyLab course - though video resources, study skills support, and exercises refined with each edition - gives students the support to be successful in math. Note: You are purchasing a standalone product; MyLab Math does not come packaged with this content. Students, if interested in purchasing this title with MyLab Math, ask your instructor to confirm the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase both the physical text and MyLab Math, search for: 0134674189 / 9780134674186 Prealgebra Plus MyLab Math with Pearson eText -- Access Card Package, 6/e Package consists of: 0134707648 / 9780134707648 Prealgebra 0135115795 / 9780135115794 MyLab Math with Pearson eText - Standalone Access Card - for Prealgebra
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler's formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler's phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
Introduction to Probability with Texas Hold'em Examples illustrates both standard and advanced probability topics using the popular poker game of Texas Hold'em, rather than the typical balls in urns. The author uses students' natural interest in poker to teach important concepts in probability.
Transition to Real Analysis with Proof provides undergraduate students with an introduction to analysis including an introduction to proof. The text combines the topics covered in a transition course to lead into a first course on analysis. This combined approach allows instructors to teach a single course where two were offered. The text opens with an introduction to basic logic and set theory, setting students up to succeed in the study of analysis. Each section is followed by graduated exercises that both guide and challenge students. The author includes examples and illustrations that appeal to the visual side of analysis. The accessible structure of the book makes it an ideal refence for later years of study or professional work. Combines the author's previous works Elements of Advanced Mathematics with Foundations of Analysis Combines logic, set theory and other elements with a one-semester introduction to analysis. Author is a well-known mathematics educator and researcher Targets a trend to combine two courses into one
Bridging the gap between procedural mathematics that emphasizes calculations and conceptual mathematics that focuses on ideas, Mathematics: A Minimal Introduction presents an undergraduate-level introduction to pure mathematics and basic concepts of logic. The author builds logic and mathematics from scratch using essentially no background except natural language. He also carefully avoids circularities that are often encountered in related books and places special emphasis on separating the language of mathematics from metalanguage and eliminating semantics from set theory. The first part of the text focuses on pre-mathematical logic, including syntax, semantics, and inference. The author develops these topics entirely outside the mathematical paradigm. In the second part, the discussion of mathematics starts with axiomatic set theory and ends with advanced topics, such as the geometry of cubics, real and p-adic analysis, and the quadratic reciprocity law. The final part covers mathematical logic and offers a brief introduction to model theory and incompleteness. Taking a formalist approach to the subject, this text shows students how to reconstruct mathematics from language itself. It helps them understand the mathematical discourse needed to advance in the field.
The tradition of honoring Martin Gardner continues with this edited collection of articles by those who have been inspired by Gardner to enter mathematics, to enter magic, to bring magic into their mathematics, or to bring mathematics into their magic. Contributing authors include world-leading puzzle designers, puzzle collectors, mathematicians, and magicians. The variety of articles includes card or magic tricks (with a mathematical trick behind them), the history behind given puzzles, mathematically interesting objects involving the number seven, and puzzles for the reader to solve. Specific puzzles discussed include tangram, 14-15 Puzzle, seven-coloring of the torus, packing circles, Crazy Elephant Dance, and more!
This volume contains the proceedings of the conference Logical Foundations of Mathematics, Computer Science, and Physics-Kurt Godel's Legacy, held in Brno, Czech Republic on the 90th anniversary of his birth. The wide and continuing importance of Godel s work in the logical foundations of mathematics, computer science, and physics is confirmed by the broad range of speakers who participated in making this gathering a scientific event.
Stanford mathematician and NPR Math Guy Keith Devlin explains why, fun aside, video games are the ideal medium to teach middle-school math. Aimed primarily at teachers and education researchers, but also of interest to game developers who want to produce videogames for mathematics education, Mathematics Education for a New Era: Video Games as a Medium for Learning describes exactly what is involved in designing and producing successful math educational videogames that foster the innovative mathematical thinking skills necessary for success in a global economy. Read the author's monthly MAA column Devlin's Angle
Keith Devlin. You know him. You've read his columns in MAA Online, you've heard him on the radio, and you've seen his popular mathematics books. In between all those activities and his own research, he's been hard at work revising Sets, Functions and Logic, his standard-setting text that has smoothed the road to pure mathematics for legions of undergraduate students. Now in its third edition, Devlin has fully reworked the book to reflect a new generation. The narrative is more lively and less textbook-like. Remarks and asides link the topics presented to the real world of students' experience. The chapter on complex numbers and the discussion of formal symbolic logic are gone in favor of more exercises, and a new introductory chapter on the nature of mathematics--one that motivates readers and sets the stage for the challenges that lie ahead. Students crossing the bridge from calculus to higher mathematics need and deserve all the help they can get. Sets, Functions, and Logic, Third Edition is an affordable little book that all of your transition-course students not only can afford, but will actually read and enjoy and learn from. About the Author Dr. Keith Devlin is Executive Director of Stanford University's Center for the Study of Language and Information and a Consulting Professor of Mathematics at Stanford. He has written 23 books, one interactive book on CD-ROM, and over 70 published research articles. He is a Fellow of the American Association for the Advancement of Science, a World Economic Forum Fellow, and a former member of the Mathematical Sciences Education Board of the National Academy of Sciences,. Dr. Devlin is also one of the world's leading popularizers of mathematics. Known as "The Math Guy" on NPR's Weekend Edition, he is a frequent contributor to other local and national radio and TV shows in the US and Britain, writes a monthly column for the Web journal MAA Online, and regularly writes on mathematics and co
Designed for undergraduate students of set theory, Classic Set Theory presents a modern perspective of the classic work of Georg Cantor and Richard Dedekin and their immediate successors. This includes: The definition of the real numbers in terms of rational numbers and ultimately in terms of natural numbers Defining natural numbers in terms of sets The potential paradoxes in set theory The Zermelo-Fraenkel axioms for set theory The axiom of choice The arithmetic of ordered sets Cantor's two sorts of transfinite number - cardinals and ordinals - and the arithmetic of these. The book is designed for students studying on their own, without access to lecturers and other reading, along the lines of the internationally renowned courses produced by the Open University. There are thus a large number of exercises within the main body of the text designed to help students engage with the subject, many of which have full teaching solutions. In addition, there are a number of exercises without answers so students studying under the guidance of a tutor may be assessed. Classic Set Theory gives students sufficient grounding in a rigorous approach to the revolutionary results of set theory as well as pleasure in being able to tackle significant problems that arise from the theory.
This volume, which ten years ago appeared as the first in the acclaimed series Lecture Notes in Logic, serves as an introduction to recursion theory. The fundamental concept of recursion makes the idea of computability accessible to a mathematical analysis, thus forming one of the pillars on which modern computer science rests. The clarity and focus of this text have established it as a classic instrument for teaching and self-study that prepares its readers for the study of advanced monographs and the current literature on recursion theory.
The Asian Logic Conference is the most significant logic meeting outside of North America and Europe, and this volume represents work presented at, and arising from the 12th meeting. It collects a number of interesting papers from experts in the field. It covers many areas of logic.
This book unravels the mystery of Geometry in Origami with a unique approach: 64 Polyhedra designs, each made from a single square sheet of paper, no cuts, no glue; each polyhedron the largest possible from the starting size of square and each having an ingenious locking mechanism to hold its shape. The author covers the five Platonic solids (cube, tetrahedron, octahedron, icosahedron and dodecahedron). There are ample variations with different color patterns and sunken sides. Dipyramids and Dimpled Dipyramids, unexplored before this in Origami, are also covered. There are a total of 64 models in the book. All the designs have an interesting look and a pleasing folding sequence and are based on unique mathematical equations.
The Star and the Whole: Gian-Carlo Rota on Mathematics and Phenomenology, authored by Fabrizio Palombi, is the first book to study Rota's philosophical reflection. Rota (1932 1999) was a leading figure in contemporary mathematics and an outstanding philosopher, inspired by phenomenology, who made fundamental contributions to combinatorial analysis, and trained several generations of mathematicians in his long career at the Massachusetts Institute of Technology (MIT) and the Los Alamos National Laboratory. The first chapter of the book reconstructs Rota's cultural biography and examines his philosophical style, his criticisms of analytical philosophy, and his reflection on Heidegger's thought. The second chapter presents a general picture of Rota's re-elaboration of phenomenology examined in the light of the Husserlian notion of Fundierung. This chapter also illustrates how the star-shape becomes a powerful instrument for understanding the properties of Husserl's mereology and the critique of objectivism. The third chapter is a theoretical reflection on the nature of mathematical entities, and the fourth examines the complex relation of mathematical research with technological applicability and scientific progress. The foreword of the text is written by Robert Sokolowski.
Exploring a vast array of topics related to computation, Computing: A Historical and Technical Perspective covers the historical and technical foundation of ancient and modern-day computing. The book starts with the earliest references to counting by humans, introduces various number systems, and discusses mathematics in early civilizations. It guides readers all the way through the latest advances in computer science, such as the design and analysis of computer algorithms. Through historical accounts, brief technical explanations, and examples, the book answers a host of questions, including: Why do humans count differently from the way current electronic computers do? Why are there 24 hours in a day, 60 minutes in an hour, etc.? Who invented numbers, when were they invented, and why are there different kinds? How do secret writings and cryptography date back to ancient civilizations? Innumerable individuals from many cultures have contributed their talents and creativity to formulate what has become our mathematical and computing heritage. By bringing together the historical and technical aspects of computing, this book enables readers to gain a deep appreciation of the long evolutionary processes of the field developed over thousands of years. Suitable as a supplement in undergraduate courses, it provides a self-contained historical reference source for anyone interested in this important and evolving field. |
![]() ![]() You may like...
Advances in Data Science and Management…
Samarjeet Borah, Valentina Emilia Balas, …
Hardcover
R5,690
Discovery Miles 56 900
Big Data Analytics - Methods and…
Saumyadipta Pyne, B.L.S.Prakasa Rao, …
Hardcover
R4,286
Discovery Miles 42 860
The Role of Corporate Sustainability in…
Gilbert Lenssen, Jay Hyuk Rhee, …
Hardcover
R3,471
Discovery Miles 34 710
Intelligent and Evolutionary Systems…
Kittichai Lavangnananda, Somnuk Phon-Amnuaisuk, …
Hardcover
R6,871
Discovery Miles 68 710
RMAN Recipes for Oracle Database 12c - A…
Darl Kuhn, Sam Alapati, …
Paperback
R2,838
Discovery Miles 28 380
Multimedia Data Mining and Analytics…
Aaron K Baughman, Jiang Gao, …
Hardcover
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
|