![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Mathematical foundations
Model theory is a branch of mathematical logic that has found applications in several areas of algebra and geometry. It provides a unifying framework for the understanding of old results and more recently has led to significant new results, such as a proof of the Mordell-Lang conjecture for function fields in positive characteristic. Perhaps surprisingly, it is sometimes the most abstract aspects of model theory that are relevant to those applications. This book gives the necessary background for understanding both the model theory and the mathematics behind the applications. Aimed at graduate students and researchers, it contains introductory surveys by leading experts covering the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations), and introducing and discussing the diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) to which the model theory is applied. The book begins with an introduction to model theory by David Marker. It then broadens into three components: pure model theory (Bradd Hart, Dugald Macpherson), geometry(Barry Mazur, Ed Bierstone and Pierre Milman, Jan Denef), and the model theory of fields (Marker, Lou van den Dries, Zoe Chatzidakis).
This volume, first published in 2000, presents a classical approach to the foundations and development of the geometry of vector fields, describing vector fields in three-dimensional Euclidean space, triply-orthogonal systems and applications in mechanics. Topics covered include Pfaffian forms, systems in n-dimensional space, and foliations and their Godbillion-Vey invariant. There is much interest in the study of geometrical objects in n-dimensional Euclidean space and this volume provides a useful and comprehensive presentation.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the sixth publication in the Perspectives in Logic series, Keith J. Devlin gives a comprehensive account of the theory of constructible sets at an advanced level. The book provides complete coverage of the theory itself, rather than the many and diverse applications of constructibility theory, although applications are used to motivate and illustrate the theory. The book is divided into two parts: Part I (Elementary Theory) deals with the classical definition of the L -hierarchy of constructible sets and may be used as the basis of a graduate course on constructibility theory. and Part II (Advanced Theory) deals with the J -hierarchy and the Jensen 'fine-structure theory'.
This book consists of 220 logic problems on which students can practice their beginner's logic skills. At least one solution is provided for each exercise. The point is to provide a vehicle for practice that will not make additional demands on the instructor's time. In addition, Logic Problems, unlike most other "secondary" texts, does not require the additional purchase of a primary text. It includes sentential and predicate arguments, and employs truth tables, formal proofs, conditional proofs and reductio. Contents: The Apparatus; Sentential Problems; Predicate Problems; Sentential Solutions; Predicate Solutions.
Mathematical Labyrinths. Pathfinding provides an overview of various non-standard problems and the approaches to their solutions. The essential idea is a framework laid upon the reader on how to solve nonconventional problems - particularly in the realm of mathematics and logic. It goes over the key steps in approaching a difficult problem, contemplating a plan for its solution, and discusses set of mental models to solve math problems.The book is not a routine set of problems. It is rather an entertaining and educational journey into the fascinating world of mathematical reasoning and logic. It is about finding the best path to a solution depending on the information given, asking and answering the right questions, analyzing and comparing alternative approaches to problem solving, searching for generalizations and inventing new problems. It also considers as an important pedagogical tool playing mathematical and logical games, deciphering mathematical sophisms, and interpreting mathematical paradoxes.It is suitable for mathematically talented and curious students in the age range 10-20. There are many 'Eureka'- type, out of the ordinary, fun problems that require bright idea and insight. These intriguing and thought-provoking brainteasers and logic puzzles should be enjoyable by the audience of almost any age group, from 6-year-old children to 80-year-old and older adults.
In this book, trigonometry is presented mainly through the solution of specific problems. The problems are meant to help the reader consolidate their knowledge of the subject. In addition, they serve to motivate and provide context for the concepts, definitions, and results as they are presented. In this way, it enables a more active mastery of the subject, directly linking the results of the theory with their applications. Some historical notes are also embedded in selected chapters.The problems in the book are selected from a variety of disciplines, such as physics, medicine, architecture, and so on. They include solving triangles, trigonometric equations, and their applications. Taken together, the problems cover the entirety of material contained in a standard trigonometry course which is studied in high school and college.We have also added some interesting, in our opinion, entertainment problems. To solve them, no special knowledge is required. While they are not directly related to the subject of the book, they reflect its spirit and contribute to a more lighthearted reading of the material.
This volume is based on the successful 6th China-Japan Seminar on number theory that was held in Shanghai Jiao Tong University in August 2011. It is a compilation of survey papers as well as original works by distinguished researchers in their respective fields. The topics range from traditional analytic number theory - additive problems, divisor problems, Diophantine equations - to elliptic curves and automorphic L-functions. It contains new developments in number theory and the topics complement the existing two volumes from the previous seminars which can be found in the same book series.
Develop a deeper understanding of mathematical concepts and their applications with new and updated editions from our bestselling series. - Build connections between topics using real-world contexts that develop mathematical modelling skills, thus providing your students with a fuller and more coherent understanding of mathematical concepts. - Develop fluency in problem-solving, proof and modelling with plenty of questions and well-structured exercises. - Overcome misconceptions and develop mathematical insight with annotated worked examples. - Enhance understanding and map your progress with graduated exercises that support you at every stage of your learning.
This volume presents some exciting new developments occurring on the interface between set theory and computability as well as their applications in algebra, analysis and topology. These include effective versions of Borel equivalence, Borel reducibility and Borel determinacy. It also covers algorithmic randomness and dimension, Ramsey sets and Ramsey spaces. Many of these topics are being discussed in the NSF-supported annual Southeastern Logic Symposium.
New to the Second Edition New Foreword by Joseph Clinton, life-long Buckminster Fuller collaborator A new chapter by Chris Kitrick on the mathematical techniques for developing optimal single-edge hexagonal tessellations, of varying density, with the smallest edge possible for a particular topology, suggesting ways of comparing their levels of optimization An expanded history of the evolution of spherical subdivision New applications of spherical design in science, product design, architecture and entertainment New geodesic algorithms for grid optimization New full-color spherical illustrations created using DisplaySphere to aid readers in visualizing and comparing the various tessellations presented in the book. Updated Bibliography with references to the most recent advancements in spherical subdivision methods.
The proceedings of the Los Angeles Caltech-UCLA 'Cabal Seminar' were originally published in the 1970s and 1980s. Games, Scales, and Suslin Cardinals is the first of a series of four books collecting the seminal papers from the original volumes together with extensive unpublished material, new papers on related topics, and discussion of research developments since the publication of the original volumes. Focusing on the subjects of 'Games and Scales' (Part 1) and 'Suslin Cardinals, Partition Properties, and Homogeneity' (Part 2), each of the two sections is preceded by an introductory survey putting the papers into present context. This volume will be an invaluable reference for anyone interested in higher set theory.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Admissible set theory is a major source of interaction between model theory, recursion theory and set theory, and plays an important role in definability theory. In this volume, the seventh publication in the Perspectives in Logic series, Jon Barwise presents the basic facts about admissible sets and admissible ordinals in a way that makes them accessible to logic students and specialists alike. It fills the artificial gap between model theory and recursion theory and covers everything the logician should know about admissible sets.
Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways: as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form ( cylindric in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin. "
This edited collection casts light on central issues within contemporary philosophy of mathematics such as the realism/anti-realism dispute; the relationship between logic and metaphysics; and the question of whether mathematics is a science of objects or structures. The discussions offered in the papers involve an in-depth investigation of, among other things, the notions of mathematical truth, proof, and grounding; and, often, a special emphasis is placed on considerations relating to mathematical practice. A distinguishing feature of the book is the multicultural nature of the community that has produced it. Philosophers, logicians, and mathematicians have all contributed high-quality articles which will prove valuable to researchers and students alike.
This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ( 49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.
Computability and Logic has become a classic because of its accessibility to students without a mathematical background and because it covers not simply the staple topics of an intermediate logic course, such as Godel's incompleteness theorems, but also a large number of optional topics, from Turing's theory of computability to Ramsey's theorem. This 2007 fifth edition has been thoroughly revised by John Burgess. Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems. This updated edition is also accompanied by a website as well as an instructor's manual.
Kurt Godel (1906-1978) was an Austrian-American mathematician,
who is best known for his incompleteness theorems. He was the
greatest mathematical logician of the 20th century, with his
contributions extending to Einstein s general relativity, as he
proved that Einstein s theory allows for time machines. See also: http: //www.youtube.com/watch?v=REy9noY5Sg8 "
Kurt Godel, the greatest logician of our time, startled the world of mathematics in 1931 with his Theorem of Undecidability, which showed that some statements in mathematics are inherently "undecidable." His work on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum theory brought him further worldwide fame. In this introductory volume, Raymond Smullyan, himself a well-known logician, guides the reader through the fascinating world of Godel's incompleteness theorems. The level of presentation is suitable for anyone with a basic acquaintance with mathematical logic. As a clear, concise introduction to a difficult but essential subject, the book will appeal to mathematicians, philosophers, and computer scientists.
First developed in the early 1980s by Lenstra, Lenstra, and Lov sz, the LLL algorithm was originally used to provide a polynomial-time algorithm for factoring polynomials with rational coefficients. It very quickly became an essential tool in integer linear programming problems and was later adapted for use in cryptanalysis. This book provides an introduction to the theory and applications of lattice basis reduction and the LLL algorithm. With numerous examples and suggested exercises, the text discusses various applications of lattice basis reduction to cryptography, number theory, polynomial factorization, and matrix canonical forms.
Combinatory logic is one of the most versatile areas within logic that is tied to parts of philosophical, mathematical, and computational logic. Functioning as a comprehensive source for current developments of combinatory logic, this book is the only one of its kind to cover results of the last four decades. Using a reader-friendly style, the author presents the most up-to-date research studies. She includes an introduction to combinatory logic before progressing to its central theorems and proofs. The text makes intelligent and well-researched connections between combinatory logic and lambda calculi and presents models and applications to illustrate these connections.
Features Provides a uniquely historical perspective on the mathematical underpinnings of a comprehensive list of games Suitable for a broad audience of differing mathematical levels. Anyone with a passion for games, game theory, and mathematics will enjoy this book, whether they be students, academics, or game enthusiasts Covers a wide selection of topics at a level that can be appreciated on a historical, recreational, and mathematical level.
First published in 1982, this reissue contains a critical exposition of the views of Frege, Dedekind and Peano on the foundations of arithmetic. The last quarter of the 19th century witnessed a remarkable growth of interest in the foundations of arithmetic. This work analyses both the reasons for this growth of interest within both mathematics and philosophy and the ways in which this study of the foundations of arithmetic led to new insights in philosophy and striking advances in logic. This historical-critical study provides an excellent introduction to the problems of the philosophy of mathematics - problems which have wide implications for philosophy as a whole. This reissue will appeal to students of both mathematics and philosophy who wish to improve their knowledge of logic.
Computational Intelligence Assisted Design framework mobilises computational resources, makes use of multiple Computational Intelligence (CI) algorithms and reduces computational costs. This book provides examples of real-world applications of technology. Case studies have been used to show the integration of services, cloud, big data technology and space missions. It focuses on computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. This book provides readers with wide-scale information on CI paradigms and algorithms, inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework will enable readers to tackle new problems without difficulty through a few tested MATLAB source codes
Kurt Gödel (1906-1978) was the most outstanding logician of the twentieth century. This second volume of a comprehensive edition of Gödel's works collects the remainder of his published work, covering the period 1938-1974. (Volume I included all of his publications from 1929-1936). Each article or closely related group of articles is preceded by an introductory note that elucidates it and places it in historical context. The aim is to make the full body of Gödel's work as accessible and useful to as wide an audience as possible, without in any way sacrificing the requirements of historical and scientific accuracy.
One of the masters in the differential equations community, the late F.V. Atkinson contributed seminal research to multiparameter spectral theory and Sturm-Liouville theory. His ideas and techniques have long inspired researchers and continue to stimulate discussion. With the help of co-author Angelo B. Mingarelli, Multiparameter Eigenvalue Problems: Sturm-Liouville Theory reflects much of Dr. Atkinson's final work. After covering standard multiparameter problems, the book investigates the conditions for eigenvalues to be real and form a discrete set. It gives results on the determinants of functions, presents oscillation methods for Sturm-Liouville systems and other multiparameter systems, and offers an alternative approach to multiparameter Sturm-Liouville problems in the case of two equations and two parameters. In addition to discussing the distribution of eigenvalues and infinite limit-points of the set of eigenvalues, the text focuses on proofs of the completeness of the eigenfunctions of a multiparameter Sturm-Liouville problem involving finite intervals. It also explores the limit-point, limit-circle classification as well as eigenfunction expansions. A lasting tribute to Dr. Atkinson's contributions that spanned more than 40 years, this book covers the full multiparameter theory as applied to second-order linear equations. It considers the spectral theory of multiparameter problems in detail for both regular and singular cases. |
![]() ![]() You may like...
Big Data in Complex and Social Networks
My T. Thai, Weili Wu, …
Paperback
R1,468
Discovery Miles 14 680
Formal Concept Analysis of Social…
Rokia Missaoui, Sergei Obiedkov, …
Hardcover
R3,517
Discovery Miles 35 170
Cognitive Social Mining Applications in…
Anandakumar Haldorai, Arulmurugan Ramu
Hardcover
R5,264
Discovery Miles 52 640
Data Science and Internet of Things…
Giancarlo Fortino, Antonio Liotta, …
Hardcover
R4,234
Discovery Miles 42 340
Advances in Knowledge Discovery and…
Bruno Pinaud, Fabrice Guillet, …
Hardcover
R3,458
Discovery Miles 34 580
Provenance in Data Science - From Data…
Leslie F Sikos, Oshani W. Seneviratne, …
Hardcover
R3,890
Discovery Miles 38 900
|